Skip to main content
Log in

Nanostructured organic pn junctions towards 3D photovoltaics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The working principle of so-called organic bulk heterojunction solar cells prepared with blends of poly(2-methoxy-5-(3’,7’-dimethyl-octyloxy))-p-phenylene vinylene (MDMO-PPV), acting as an electron donor, and (6,6)-phenyl-C61-butyric-acid methyl ester (PCBM) (a soluble C60 derivative), acting as electron acceptor, is based on the presence of three-dimensional nanostructured pn junctions and percolation paths for charge transport. At high PCBM contents, spontaneous phase separation occurs giving rise to PCBM-rich spherical/ellipsoidal regions (electron transport) embedded in a MDMO-PPV-rich matrix (hole transport). With transmission electron microscopy and scanning probe microscopy techniques it has been demonstrated that the size of the PCBM-rich region depends strongly on the preparation conditions such as solvents and drying conditions. The morphology of the active films in high-performance bulk heterojunction solar cells is characterized by a significantly higher number and a smaller size (nanoscale) of the PCBM-rich regions than for the low-performance cells. This morphology yields both an increase of the useful photoactive volume and an increase of the percolation paths for charge transport. Towards mature and high-performance organic-based three-dimensional photovoltaics, it is clear that besides mastering the electro-optical properties of the constituting materials it also of key importance to control the nanomorphology of the solid-state blends in order to obtain efficient interpenetrating pn networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Nelson: Mater. Today, May, 20 (2002)

  2. B. O’Regan, M. Grätzel: Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  3. N.S. Saritiftci, L. Smilowitz, A.J. Heeger, F. Wudl: Science 258, 1474 (1992)

    Article  ADS  Google Scholar 

  4. J.C. Brabec, G. Zera, N.S. Saritiftci: Chem. Phys. Lett. 340, 232 (2001)

    Article  ADS  Google Scholar 

  5. G. Yu, J. Gao, J.C. Hummelen: Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  6. L.S. Roman, M.R. Andersson, T. Yohanms: Adv. Mater. 9, 1164 (1997)

    Article  Google Scholar 

  7. S.E. Shaheen, C.J. Brabec, N.S. Saritiftci, F. Padinger, T. Fromherz, J.C. Hummelen: Appl. Phys. Lett. 78, 841–843 (2001)

    Article  ADS  Google Scholar 

  8. T. Munters, T. Martens, L. Goris, V. Vrindts, J. Manca, L. Lutsen, W. De Ceunick, D. Vanderzande, L. De Schepper, J. Gelan, N.S. Sariciftci, C.J. Brabec: Thin Solid Films 403404, 247 (2002)

  9. F. Louwet, D. Vanderzande, J. Gelan, J. Mullens: Macromolecules 28, 1330 (1995)

    Article  ADS  Google Scholar 

  10. F. Louwet, D. Vanderzande, J. Gelan: Synth. Met. 52, 125 (1995)

    Article  Google Scholar 

  11. F. Louwet, D. Vanderzande, J. Gelan: Synth. Met. 69, 509 (1995)

    Article  Google Scholar 

  12. H. Spreitzer, H. Becker, E. Kluge, W. Kreuder, H. Schenck, R. Demandt, H. Schoo: Adv. Mater. 10, 1340 (1998)

    Article  Google Scholar 

  13. H.G. Gilch, W.L. Wheelwright: J. Polym. Sci. 4, 1337 (1966)

    Article  Google Scholar 

  14. F. Padinger, R.S. Rittberger, N.S. Sariciftci: Adv. Funct. Mater. 13, 85 (2003)

    Article  Google Scholar 

  15. T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca: Synth. Met. 138, 243 (2003)

    Article  Google Scholar 

  16. T. Martens, Z. Beelen, J. D’Haen, T. Munters, L. Goris, J. Manca: SPIE Proc. 4801, 40 (2003)

    Article  ADS  Google Scholar 

  17. T. Martens, J. D’Haen, T. Munters, L. Goris, Z. Beelen, J. Manca: Mater. Res. Soc. Symp. Proc. 725, P7.11.1 (2002)

  18. J.C. Hummelen: private communication

  19. W. Geens: PhD thesis, University of Antwerp/IMEC (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.V. Manca.

Additional information

PACS

68.37.Lp; 72.80.Le; 73.50.Pz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, T., Munters, T., Goris, L. et al. Nanostructured organic pn junctions towards 3D photovoltaics. Appl. Phys. A 79, 27–30 (2004). https://doi.org/10.1007/s00339-003-2497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2497-6

Keywords

Navigation