Skip to main content
Log in

Genome skimming resolves the giant clam (Bivalvia: Cardiidae: Tridacninae) tree of life

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Giant clams are conspicuous bivalves inhabiting Indo-Pacific reefs. Since Rosewater’s seminal paper in 1965, the number of giant clam species described or resurrected has exactly doubled. The increased number of species reported and accessibility to genetic material of rare or uncommon species therefore call for a reappraisal of the phylogenetic relationships within the Tridacninae subfamily. Here, we aim to reconstruct the evolutionary relationships among all 12 extant species by performing a comprehensive phylogenetic analysis of mitochondrial genome and nuclear 18S rRNA data from a combination of genome skimming, Sanger sequencing and previously published sequences. Comparing the mitogenomes among Tridacninae species, we report two new findings: (1) the T. crocea mitogenome length obtained here (18,266 bp) is shorter than previously known, and (2) the mitochondrial gene order in T. crocea and T. squamosa differs from the other species. Our phylogeny based on a concatenated 16-gene dataset (15 mitochondrial markers and nuclear 18S rRNA) reveals highly supported relationships within and between the three subgenera, Tridacna (Tridacna), Tridacna (Persikima) and Tridacna (Chametrachea). Overall, the inclusion of new molecular markers greatly improves the confidence and support for the subfamily’s phylogeny. The availability of this comprehensive phylogenetic dataset serves as the foremost baseline of Tridacninae relationships to support future studies examining giant clam systematics, ecology and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Nakeeb K, Petersen TN, Sicheritz-Pontén T (2017) Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data. BMC Bioinformatics 18:510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albert DDA, Bujeng V, Chia S (2017) Traditional shell artefact production in Northern Sabah. Sabah Soc J 33:45–55

    Google Scholar 

  • Alqahtani F, Măndoiu II (2020) Statistical Mitogenome Assembly with RepeaTs. J Comput Biol. https://doi.org/10.1089/cmb.2019.0505

    Article  PubMed  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzie JAH, Williams ST (1998) Phylogenetic relationships among giant clam species (Mollusca: Tridacnidae) determined by protein electrophoresis. Mar Biol 132:123–133

    Article  CAS  Google Scholar 

  • Berger BA, Han J, Sessa EB, Gardner AG, Shepherd KA, Ricigliano VA, Jabaily RS, Howarth DG (2017) The unexpected depths of genome-skimming data: a case study examining Goodeniaceae floral symmetry genes. Appl Plant Sci 5:1700042

    Article  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL, Medina M, Rosenberg LA (2004) Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea. Mol Biol Evol 21:1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Borsa P, Fauvelot C, Andréfouët S, Chai T-T, Kubo H, Liu L-L (2015) On the validity of Noah’s giant clam Tridacna noae (Röding, 1798) and its synonymy with Ningaloo giant clam Tridacna ningaloo Penny & Willan, 2014. Raffles B Zool 63:484–489

    Google Scholar 

  • Cai S, Mu W, Wang H, Chen J, Zhang H (2019) Sequence and phylogenetic analysis of the mitochondrial genome of giant clam, Tridacna crocea (Tridacninae: Tridacna). Mitochondr DNA B 4:1032–1033

    Article  Google Scholar 

  • Claus CA (2017) Beyond Merroir: the Okinawan Taste for Clams. Gastronomica 17:49–57

    Article  Google Scholar 

  • Combosch DJ, Collins TM, Glover EA, Graf DL, Harper EM, Healy JM, Kawauchi GY, Lemer S, McIntyre E, Strong EE, Taylor JD, Zardus JD, Mikkelsen PM, Giribet G, Bieler R (2017) A family-level tree of life for bivalves based on a Sanger-sequencing approach. Mol Phylogenet Evol 107:191–208

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and high-performance computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18

    PubMed  CAS  Google Scholar 

  • Dodsworth S (2015) Genome skimming for next-generation biodiversity analysis. Trends Plant Sci 20:525–527

    Article  CAS  PubMed  Google Scholar 

  • Dreyer H, Steiner G (2006) The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculate and Hiatella arctica – and the first record for a putative Atpase subunit 8 gene in marine bivalves. Front Zool 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fauvelot C, Andréfouët S, Grulois D, Tiavouane J, Wabnitz CCC, Magalon H, Borsa P (2019) Phylogeography of Noah’s giant clam. Mar Biodiv 49:521–526

    Article  Google Scholar 

  • Fauvelot C, Zuccon D, Borsa P, Grulois D, Magalon H, Riquet F, Andréfouët S, Berumen ML, Sinclair-Taylor TH, Gélin P, Behivoke F, ter Poorten JJ, Strong EE, Bouchet P (2020) Phylogeographical patterns and a cryptic species provide new insights into Western Indian Ocean giant clams phylogenetic relationships and colonization history. J Biogeogr 47:1086–1105

    Article  Google Scholar 

  • Figueroa DF, Baco AR (2014) Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics. Genome Biol Evol 7:391–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan HM, Gan HY, Tan MH, Penny SS, Willan RC, Austin CM (2016) The complete mitogenome of the giant clam Tridacna squamosa (Heterodonta: Bivalvia: Tridacnidae). Mitochondr DNA A 27:3220–3221

    Article  CAS  Google Scholar 

  • Gomez ED (2015) Rehabilitation of biological resources: coral reefs and giant clam populations need to be enhanced for a sustainable marginal sea in the western Pacific. J Int Wildlife Law Pol 18:120–127

    Article  Google Scholar 

  • Griffiths DJ, Winsor H, Luong-Van T (1992) Iridophores in the mantle of giant clams. Aust J Zool 40:319–326

    Article  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res 41:e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedley C (1921) A revision of the Australian Tridacna. Rec Aust Mus 13:163–172, pls. 27–34

  • Herrera ND, ter Poorten JJ, Bieler R, Mikkelsen PM, Strong EE, Jablonski D, Steppan SJ (2015) Molecular phylogenetics and historical biogeography amid shifting continents in the cockles and giant clams (Bivalvia: Cardiidae). Mol Phylogenet Evol 93:94–106

    Article  PubMed  Google Scholar 

  • Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM (2014) Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 11:20140678

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Goldberg EE, Chou LM, Roy K (2018) The origin and evolution of coral species richness in a marine biodiversity hotspot. Evolution 72:288–302

    Article  PubMed  Google Scholar 

  • Huber M, Eschner A (2011) Tridacna (Chametrachea) costata Roa-Quiaoit, Kochzius, Jantzen, Al-Zibdah and Richter from the Red Sea, a junior synonym of Tridacna squamosina Sturany, 1899 (Bivalvia, Tridacnidae). Ann Nat Hist Mus Wien B 112:153–162

    Google Scholar 

  • Huelsken T, Keyse J, Liggins L, Penny S, Treml EA, Riginos C (2013) A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS ONE 8:e80858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imanishi Y, Tanaka M, Fujiwara M (2013) Complete mitochondrial genome sequence of Japanese cockle Fulvia mutica (Cardiidae). Fish Sci 79:949–957

    Article  CAS  Google Scholar 

  • Iredale T (1937) Mollusca of Middleton and Elizabeth Reefs, South Pacific Ocean. The Australian Zoologist 8:232–261, pls. 15–17

  • Kamishima Y (1990) Organization and development of reflecting platelets in iridophores of the giant clam, Tridacna crocea Lamarck. Zool Sci 7:63–72

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern EMA, Kim T, Park J-K (2020) The mitochondrial genome in nematode phylogenetics. Front Ecol Evol 8:250

    Article  Google Scholar 

  • Keys JL, Healy JM (2000) Relevance of sperm ultrastructure to the classification of giant clams (Mollusca, Cardioidea, Cardiidae, Tridacninae). In: Harper EM, Taylor JD, Crame JA (eds) The Evolutionary Biology of the Bivalvia. Geological Society Special Publication No. 177. London: Geological Society, pp. 191–205

  • Kirkendale L, Paulay G (2017) Part N, Revised, Volume 1, Chapter 9: Photosymbiosis in Bivalvia. Treatise Online 89:1–39

  • Klumpp DW, Lucas JS (1994) Nutritional ecology of the giant clams Tridacna tevoroa and T. derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol Prog Ser 107:147–156

    Article  Google Scholar 

  • Klumpp DW, Bayne BL, Hawkins AJS (1992) Nutrition of the giant clam Tridacna gigas (L.). I. Contribution of filter feeding and photosynthates to respiration and growth. J Exp Mar Biol Ecol 155:105–122

    Article  Google Scholar 

  • Kubo H, Iwai K (2007) On two sympatric species within Tridacnamaxima”. Annual Rep Okinawa Fish Oceanogr Res Centre 68:205–210 [In Japanese]

    Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson C (2016) Shell trade pushes giant clams to the brink. Science 351:323–324

    Article  CAS  PubMed  Google Scholar 

  • Lemer S, Bieler R, Giribet G (2019) Resolving the relationships of clams and cockles: dense transcriptome sampling drastically improves the bivalve tree of life. Proc R Soc B 286:20182684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lemer S, Kirkendale L, Bieler R, Cavanaugh C, Giribet G (2020) Shedding light: a phylotranscriptomic perspective illuminates the origin of photosymbiosis in marine bivalves. BMC Evol Biol 20:1–15

    Article  CAS  Google Scholar 

  • Ling H, Todd PA, Chou LM, Yap VB, Sivaloganathan B (2008) The defensive role of scutes in juvenile fluted giant clams (Tridacna squamosa). J Exp Mar Biol Ecol 359:77–83

    Article  Google Scholar 

  • Liu J, Cui D, Wang H, Chen J, Liu H, Zhang H (2020) Extensive cryptic diversity of giant clams (Cardiidae: Tridacninae) revealed by DNA-sequence-based species delimitation approaches with new data from Hainan Island, South China Sea. J Mollus Stud 86:56–63

    Article  Google Scholar 

  • Lucas JS, Ledua E, Braley RD (1991) Tridacna tevoroa Lucas, Ledua and Braley: a recently described species of giant clam (Bivalvia: Tridacnidae) from Fiji and Tonga. Nautilus 105:92–103

    Google Scholar 

  • Lyons Y, Cheong D, Neo ML, Wong HF (2018) Managing giant clams in the South China Sea. Int J Mar Coast Law 33:467–494

    Article  Google Scholar 

  • Ma H, Lin L, Zhang Y, Chen S, Shi W, Yu Z (2018) The complete mitochondrial genome sequence of the giant clam Tridacna derasa (Tridacnidae: Tridacna). Mitochondr DNA B 3:911–912

    Article  Google Scholar 

  • Ma H, Zhang Y, Xiao S, Chen S, Zhang Y, Xiang Z, Li J, Yu Z (2019a) The complete mitochondrial genome of the giant clam, Hippopus hippopus (Cardiidae: Tridacninae). Conserv Genet Resour 11:263–266

    Article  Google Scholar 

  • Ma H, Zhang Y, Zhang Y, Xiao S, Han C, Chen S, Yu Z (2019b) The complete mitochondrial genome of the giant clam, Tridacna maxima (Tridacnidae: Tridacna). Mitochondr DNA B 4:1051–1052

    Article  Google Scholar 

  • Madden TL (2002) The BLAST sequence analysis tool. In: McEntyre J (ed) The NCBI Handbook. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD, 15. [Online]

  • Malé P-JG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J (2014) Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol Ecol Resour 14:966–975

    PubMed  Google Scholar 

  • Maruyama T, Ishikura M, Yamazaki S, Kanai S (1998) Molecular phylogeny of zooxanthellate bivalves. Biol Bull 195:70–77

    Article  CAS  PubMed  Google Scholar 

  • Meng G, Li Y, Yang C, Liu S (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res 47:e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean RA (1947) A revision of the pelecypod family Tridacnidae. Notulae Naturae of The Academy of Natural Sciences of Philadelphia 195:1–7

    Google Scholar 

  • Mies M, Dor P, Güth AZ, Sumida PYG (2017) Production in giant clam aquaculture: trends and challenges. Rev Fish Sci Aquac 25:286–296

    Article  Google Scholar 

  • Moir BG (1986) A review of Tridacnid ecology and some possible implications for archaeological research. Asian Perspec 27:95–121

    Google Scholar 

  • Monsecour K (2016) A new species of giant clam (Bivalvia: Cardiidae) from the Western Indian Ocean. Conchylia 46:69–77

    Google Scholar 

  • Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene tree versus nuclear-gene trees. Evolution 49:718–726

    PubMed  Google Scholar 

  • Morishima S-Y, Yamashita H, O-hara S, Nakamura Y, Quek VZQ, Yamauchi M, Koike K (2019) Study on expelled but viable zooxanthellae from giant clams, with an emphasis on their potential as subsequent symbiont sources. PLoS ONE 14:e0220141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton B (2000) The biology and functional morphology of Fragum erugatum (Bivalvia: Cardiidae) from Shark Bay, Western Australia: the significance of its relationship with entrained zooxanthellae. J Zool 251:39–52

    Article  Google Scholar 

  • Neo ML (2020) Conservation of giant clams (Bivalvia: Cardiidae). In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 4. Elsevier, pp 527–538

  • Neo ML, Todd PA (2011) Predator-induced changes in fluted giant clam (Tridacna squamosa) shell morphology. J Exp Mar Biol Ecol 397:21–26

    Article  Google Scholar 

  • Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123

    Article  Google Scholar 

  • Neo ML, Wabnitz CCC, Braley RD, Heslinga GA, Fauvelot C, Wynsberge SV, Andréfouët S, Waters C, Tan AS-H, Gomez ED, Costello MJ, Todd PA (2017) Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. In: Hawkins SJ, Evans AJ, Dale AC, Firth LB, Hughes DJ, Smith IP (eds) Oceanography and Marine Biology: An Annual Review, Volume 55. CRC Press: Boca Raton, FL, pp. 87–388

  • Neo ML, Liu L-L, Huang D, Soong K (2018) Thriving populations with low genetic diversity in giant clam species, Tridacna maxima and Tridacna noae, at Dongsha Atoll, South China Sea. Reg Stud Mar Sci 24:278–287

    Google Scholar 

  • Neo ML, Lim KK, Yang S-Y, Soong GY, Masucci GD, Biondi P, Wee HB, Kise H, Reimer JD (2019) Status of giant clam resources around Okinawa-jima Island, Ryukyu Archipelago, Japan. Aquat Conserv 29:1002–1011

    Article  Google Scholar 

  • Newman WA, Gomez ED (2000) On the status of giant clams, relics of Tethys (Mollusca: Bivalvia: Tridacninae). In: Moosa MK, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno, Suharsono (eds) Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000, Vol. 2, Jakarta: Indonesian Institute of Sciences, Jakarta: Ministry of Environment, Honolulu, Hawaii: International Society for Reef Studies, pp. 927–936

  • Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16:358–364

    Article  CAS  PubMed  Google Scholar 

  • Norton JH, Jones GW (1992) The giant clam: An anatomical and histological atlas. ACIAR Monograph

  • Nuryanto A, Duryadi D, Soedharma D, Blohm D (2007) Molecular phylogeny of giant clams based on mitochondrial DNA cytochrome oxidase I gene. HAYATI J Biosci 14:162–166

    Article  Google Scholar 

  • Pappas MK, He S, Hardenstine RS, Kanee H, Berumen ML (2017) Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea. Mar Biodivers 47:1209–1222

    Article  Google Scholar 

  • Penny SS, Willan RC (2014) Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia. Molluscan Res 34:201–211

    Article  Google Scholar 

  • Plazzi F, Ribani A, Passamonti M (2013) The complete mitochondrial genome of Solemya velum (Mollusca: Bivalvia) and its relationships with Conchifera. BMC Genomics 14:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plazzi F, Puccio G, Passamonti M (2016) Comparative large-scale mitogenomics evidences clade-specific evolutionary trends in mitochondrial DNAs of Bivalvia. Genome Biol Evol 8:2544–2564

    Article  PubMed  PubMed Central  Google Scholar 

  • Poliseno A, Santos MEA, Kise H, Macdonald B, Quattrini AM, McFadden CS, Reimer JD (2020) Evolutionary implications of analyses of complete mitochondrial genomes across order Zoantharia (Cnidaria: Hexacorallia). J Zool Syst Evol Res

  • Pradillon F, Schmidt A, Peplies J, Dubilier N (2007) Species identification of marine invertebrate early stages by whole-larvae in situ hybridisation of 18S ribosomal RNA. Mar Ecol Prog Ser 333:103–116

    Article  CAS  Google Scholar 

  • Quek ZBR, Chang JJM, Ip YCA, Huang D (2019) Complete mitochondrial genome of the sea star Archaster typicus (Asteroidea: Archasteridae). Mitochondr DNA B 4:3130–3132

    Article  Google Scholar 

  • Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, Kaschner K, Garilao C, Near TJ, Coll M, Alfaro ME (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–395

    Article  CAS  PubMed  Google Scholar 

  • Ramah S, Taleb-Hossenkhan N, Todd PA, Neo ML, Bhagooli R (2019) Drastic decline in giant clams (Bivalvia: Tridacninae) around Mauritius Island, Western Indian Ocean: implications for conservation and management. Mar Biodivers 49:815–823

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Liu X, Jiang F, Guo X, Liu B (2010) Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia. BMC Evol Biol 10:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter C, Roa-Quiaoit H, Jantzen C, Al-Zibdah M, Kochzius M (2008) Collapse of a new living species of giant clam in the Red Sea. Curr Biol 18:1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A, Gusmão L, Häussermann V, Reft A, Daly M (2014) Phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS ONE 9:e96998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosewater J (1965) The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1:347–396

    Google Scholar 

  • Rosewater J (1982) A new species of Hippopus (Bivalvia: Tridacnidae). The Nautilus 96:3–6

    Article  Google Scholar 

  • Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    Article  CAS  PubMed  Google Scholar 

  • Schneider JA (1992) Preliminary cladistic analysis of the bivalve family Cardiidae. Am Malacol Bull 9:145–155

    Google Scholar 

  • Schneider JA (1998) Phylogeny of the Cardiidae (Bivalvia): Phylogenetic relationships and morphological evolution within the subfamilies Clinocardiinae, Lymnocardiinae, Fraginae and Tridacninae. Malacologia 40:321–373

    CAS  Google Scholar 

  • Schneider JA, Ó Foighil D (1999) Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Mol Phylogenet Evol 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Shang YC, Tisdell C, Leung PS (1991) Report on a Market Survey of Giant Clam Products in Selected Countries. Center for Tropical and Subtropical Aquaculture, Waimanalo, Hawaii

    Google Scholar 

  • Sim DZH, Neo ML, Ang ACF, Ying LSM, Todd PA (2018) Trade-offs between defence and competition in gregarious juvenile fluted giant clams (Tridacna squamosa L.). Mar Biol 165:103

    Article  Google Scholar 

  • Sirenko BI, Scarlato OA (1991) Tridacna rosewateri sp. n – A new species of giant clam from Indian Ocean (Bivalvia: Tridacnidae). La Conchglia 22:4–9

    Google Scholar 

  • Sowerby II GB (1884) Monograph of the genera Tridacna and Hippopus. In: Sowerby GB (ed) Thesaurus Conchyliorum, or Monographs of genera of shells, Volume 5. London, privately published, 179–182, pls. 485–489

  • Sowerby GB (1912) Notes on the shells of Tridacna, and description of a new species. P Malacological Soc London 10:29–31

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Hung JH, Kubo H, Liu LL (2014) Tridacna noae (Röding, 1798) – a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles B Zool 62:124–135

    Google Scholar 

  • Sun S, Li Q, Kong L, Yu H (2016) Complete mitochondrial genomes of Trisidos kiyoni and Potiarca pilula: Varied mitochondrial genome size and highly rearranged gene order in Arcidae. Sci Rep 6:33794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y (1998) Preliminary studies on locomotion and burrowing by juvenile boring clam, Tridacna crocea. Naga, The ICLARM Quarterly:31–35

  • Taylor JD, Williams ST, Glover EA, Dyal P (2007) A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zool Scr 36:587–606

    Article  Google Scholar 

  • Tisdell C (1992) Giant clams in the sustainable development of the South Pacific: socioeconomic issues in mariculture and conservation. ACIAR Monograph No. 18

  • Vicentuan-Cabaitan K, Neo ML, Eckman W, Teo SL-M, Todd PA (2014) Giant clam shells host a multitude of epibionts. B Mar Sci 90:795–796

    Article  Google Scholar 

  • Yonge CM (1936) Mode of life feeding, digestion and symbiosis with zooxanthellae in the Tridanidae. Sci Rep Great Barrier Reef Exp 1928–1929(1):283–321

    Google Scholar 

  • Yuan Y, Li Q, Yu H, Kong L (2012) The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): Variable gene arrangements and phylogenetic implications. PLoS ONE 7:e32353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Reef Ecology Laboratory for their support and assistance, especially Marc Chang and Sudhanshi Jain for help in the laboratory. Authors Neo ML and Fauvelot C acknowledge Gustav Paulay for sharing T. squamosina sample UF463401 and image from the Farasan Island, Saudi Arabia; Felix Lorenz and Jana Kratzsch for sharing T. rosewateri image from Cargados Carajos Archipelago, Mauritius Outlying Territories; and Serge Andréfouët for sharing T. elongatissima image from Juan de Nova Island. Author Neo ML also acknowledges National Research Foundation (NRF), Prime Minister’s Office, Singapore, for supporting her research endeavours at the St John’s Island National Marine Laboratory. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Marine Science R&D Programme (MSRDP-P03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Lin Neo or Danwei Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Steve Vollmer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, E.Y.W., Quek, Z.R., Neo, M.L. et al. Genome skimming resolves the giant clam (Bivalvia: Cardiidae: Tridacninae) tree of life. Coral Reefs 41, 497–510 (2022). https://doi.org/10.1007/s00338-020-02039-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-02039-w

Keywords

Navigation