Skip to main content

Advertisement

Log in

Temporal effects of ocean warming and acidification on coral–algal competition

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

While there is an ever-expanding list of impacts on coral reefs as a result of ocean warming and acidification, there is little information on how these global changes influence coral–algal competition. The present study assessed the impact of business-as-usual ocean warming and acidification conditions on the survivorship, calcification, photosynthesis and respiration of the coral–algal interaction between the macroalga Halimeda heteromorpha and the coral Acropora intermedia over 8 weeks in two seasons. The physiological responses of A. intermedia and H. heteromorpha were highly dependent on season, with both organisms demonstrating optimal rates of calcification and photosynthesis under present-day conditions in summer. Contact with H. heteromorpha did not influence A. intermedia survivorship, however did reduce long-term calcification rates. Photosynthetic rates of A. intermedia were influenced by algal contact temporally in opposing directions, with rates reduced in winter and increased in summer. Enhanced photosynthetic rates as a result of algal contact were not enough to offset the combined effects of ocean warming and acidification, which regardless of coral–algal contact, reduced survivorship, calcification and photosynthesis of A. intermedia and the calcification rates of H. heteromorpha. These findings provide experimental support for the idea that the effects of coral–algal competition are temporally variable, and help improve our understanding of how future ocean warming and acidification may alter the dynamics of coral–algal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Achlatis M, van der Zande RM, Schönberg CH, Fang JK, Hoegh-Guldberg O, Dove S (2017) Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Scientific Reports 7

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences 105:17442–17446

    Article  Google Scholar 

  • Atapattu SS (2009) The effect of two common reef organisms on the growth of the common reef coral Acropora formosa. Marine Biodiversity Records 2:e61

    Article  Google Scholar 

  • Ban SS, Graham NAJ, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biology 20:681–697

    Article  PubMed  Google Scholar 

  • Bonaldo RM, Hay ME (2014) Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. PloS one 9:e85786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka MA, Larkum AW (1976) Calcification in the green alga Halimeda III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany 27:879–893

    Article  CAS  Google Scholar 

  • Brown KT, Bender-Champ D, Bryant DEP, Dove S, Hoegh-Guldberg O (2017) Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. Journal of Experimental Marine Biology and Ecology 497:33–40

    Article  Google Scholar 

  • Brown KT, Bender-Champ D, Kubicek A, van der Zande R, Achlatis M, Hoegh-Guldberg O, Dove SG (2018) The dynamics of coral-algal interactions in space and time on the southern Great Barrier Reef. Frontiers in Marine Science 5:181

    Article  Google Scholar 

  • Campbell JE, Fisch J, Langdon C, Paul VJ (2016) Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35:357–368

    Article  Google Scholar 

  • Campbell JE, Sneed JM, Johnston L, Paul VJ (2017) Effects of ocean acidification and contact with the brown alga Stypopodium zonale on the settlement and early survival of the coral Porites astreoides. Marine Ecology Progress Series 577:67–77

    Article  CAS  Google Scholar 

  • Castillo KD, Ries JB, Bruno JF, Westfield IT (2014) The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proceedings of the Royal Society of London B: Biological Sciences 281:20141856

    Article  CAS  Google Scholar 

  • Castro-Sanguino C, Lovelock C, Mumby PJ (2016) The effect of structurally complex corals and herbivory on the dynamics of Halimeda. Coral Reefs: 1–13

  • Castro-Sanguino C, Lovelock C, Mumby PJ (2017) Factors affecting tolerance to herbivory in a calcifying alga on coral reefs. Marine Biology 164:37

    Article  CAS  Google Scholar 

  • Chisholm JR, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnology and Oceanography 36:1232–1239

    Article  CAS  Google Scholar 

  • Coelho VR, Fenner D, Caruso C, Bayles BR, Huang Y, Birkeland C (2017) Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. Journal of Experimental Marine Biology and Ecology 497:152–163

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel N, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography 58:388–398

    Article  CAS  Google Scholar 

  • Cornwall CE, Hurd CL (2015) Experimental design in ocean acidification research: problems and solutions. ICES Journal of Marine Science 73:572–581

    Article  Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biology 16:851–863

    Article  Google Scholar 

  • Crossland C (1984) Seasonal variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Marine ecology progress series Oldendorf 15:135–140

    Article  CAS  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine biology 101:389–395

    Article  Google Scholar 

  • Del Monaco C, Hay ME, Gartrell P, Mumby PJ, Diaz-Pulido G (2017) Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral. Scientific Reports 7:41053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters 14:156–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O (2013) Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences 110:15342–15347

    Article  Google Scholar 

  • Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bulletin of Marine Science 29:79–95

    Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Fang JK, Mello-Athayde MA, Schönberg CH, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global change biology 19:3581–3591

    Article  PubMed  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens K (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Fitt W, McFarland F, Warner M, Chilcoat G (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and oceanography 45:677–685

    Article  CAS  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71

    Article  CAS  PubMed  Google Scholar 

  • Hoadley KD, Pettay DT, Grottoli AG, Cai W-J, Melman TF, Schoepf V, Hu X, Li Q, Xu H, Wang Y (2015) Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host + symbiont response. Scientific reports 5

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Horvath KM, Castillo KD, Armstrong P, Westfield IT, Courtney T, Ries JB (2016) Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Scientific Reports 6

  • Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends in ecology & evolution 25:633–642

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R (2017a) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017b) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Jackson R, Le Quéré C, Andrew R, Canadell J, Peters G, Roy J, Wu L (2017) Warning signs for stabilizing global CO2 emissions. Environmental Research Letters 12:110202

    Article  CAS  Google Scholar 

  • Jensen PR, Gibson RA, Littler MM, Littler DS (1985) Photosynthesis and calcification in four deep-water Halimeda species (Chlorophyceae, Caulerpales). Deep Sea Research Part A Oceanographic Research Papers 32:451–464

    Article  CAS  Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jompa J, McCook LJ (2003) Coral-algal competition: macroalgae with different properties have different effects on corals. Marine Ecology Progress Series 258:87–95

    Article  Google Scholar 

  • Kersting DK, Cebrian E, Casado C, Teixidó N, Garrabou J, Linares C (2015) Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Scientific reports 5

  • Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports 2:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC (2013a) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3:156–159

    Article  CAS  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P (2013b) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19:1884–1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, Bakker DCE, Barbero L, Becker M, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Cosca CE, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton RA, Hunt CW, Hurtt G, Ilyina T, Jain AK, Kato E, Kautz M, Keeling RF, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, Nojiri Y, Padín XA, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S, Zhu D (2017) Global Carbon Budget 2017. Earth Syst Sci Data Discuss 2017:1–79

    Article  Google Scholar 

  • Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy Tennessee

  • Longo GO, Hay ME (2015) Does seaweed–coral competition make seaweeds more palatable? Coral Reefs 34:87–96

    Article  Google Scholar 

  • McCook L (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral reefs 18:357–367

    Article  Google Scholar 

  • McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annual review of plant biology 50:333–359

    Article  CAS  Google Scholar 

  • Pörtner H-O, Karl DM, Boyd PW, Cheung W, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO, Alheit J, Aristegui J (2014) Ocean systems Climate change 2014: impacts, adaptation, and vulnerability Part A: global and sectoral aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp411-484

  • Pruitt JN (2012) Behavioural traits of colony founders affect the life history of their colonies. Ecology letters 15:1026–1032

    Article  PubMed  Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci U S A 107:9683–9688

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. Proceedings of the Royal Society of London B: Biological Sciences 281:20132615

    Article  Google Scholar 

  • Rau GH, McLeod EL, Hoegh-Guldberg O (2012) The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change 2:720

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109:33

  • Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trends in Ecology & Evolution 27:404–413

    Article  Google Scholar 

  • Schoepf V, Grottoli AG, Warner ME, Cai W-J, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PloS one 8:e75049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinutok S, Hill R, Doblin M, Kühl M, Ralph P (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213

    Article  Google Scholar 

  • Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment 17:465–487

    Article  CAS  Google Scholar 

  • Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, p 2013

    Google Scholar 

  • Veal C, Holmes G, Nunez M, Hoegh-Guldberg O, Osborn J (2010) A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods 8:241–253

    Google Scholar 

  • Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology 18:1491–1498

    Article  Google Scholar 

  • Whitaker JR, Granum PE (1980) An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Analytical biochemistry 109:156–159

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

  • Wizemann A, Meyer FW, Westphal H (2014) A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33:951–964

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. CRC press

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) LP110200874 (SD and OHG), the ARC Centre of Excellence for Coral Reef Studies CE140100020 (SD and OHG) and an ARC Laureate Fellowship FL120100066 (OHG). It was also supported by the Holsworth Wildlife Research Endowment-Equity Trustees Charitable Foundation & the Ecological Society of Australia (KTB), the PADI Foundation (KTB) and a XL Catlin Seaview Survey scholarship (KTB). We would like to thank Aaron Chai for support in the field, colleagues of the Coral Reef Ecosystem Laboratory, and the staff of Heron Island Research Station. Research was conducted under GBR Marine Park Authority Permit #G15/37620.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen T. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.T., Bender-Champ, D., Kenyon, T.M. et al. Temporal effects of ocean warming and acidification on coral–algal competition. Coral Reefs 38, 297–309 (2019). https://doi.org/10.1007/s00338-019-01775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01775-y

Keywords

Navigation