Skip to main content

Advertisement

Log in

Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Similar to shallower conspecifics, mesophotic scleractinian corals found at ~ 30–150 m depths maintain important symbioses with photosynthetic microalgae in the genus Symbiodinium. Despite the importance of coral-algal symbioses in corals’ ability to thrive in multiple dynamic environments and potential role in connectivity, few studies have focused on mesophotic Symbiodinium assemblages. This study examines these assemblages in Montastraea cavernosa found at shallow (20–25 m) and mesophotic (45–50 m) depths at Flower Garden Banks National Marine Sanctuary and McGrail Bank, in the northwest Gulf of Mexico. Mesophotic corals contained significantly more Symbiodinium cells, more chlorophyll a per Symbiodinium cell, and more chlorophyll a and c2 per unit area coral tissue than shallow corals. However, both mesophotic and shallow M. cavernosa contained similar chlorophyll c2 per Symbiodinium cell. Next-generation sequencing of the internal transcribed spacer region (ITS2) of the ribosomal DNA indicated similar Symbiodinium assemblage diversity at all banks and between depths. All assemblages were dominated by sequences most closely related to S. goreaui, type C1, with three additional low-abundance sequences, identified as 2 C types and 1 A type, also consistently observed among colonies. Both the dominant C1 sequence and the background sequences persisted over two sampling years. These results suggest that algal symbiont assemblages will not limit connectivity potential in M. cavernosa in the northwest Gulf of Mexico. Furthermore, we hypothesize that increased Symbiodinium abundance may represent an effective light-harvesting strategy on light-limited mesophotic coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342

    Article  CAS  Google Scholar 

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ccology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Blyth-Skyrme VJ, Rooney JJ, Parrish FA, Boland RC (2013) Mesophotic coral ecosystems: Potential candidates as Essential Fish Habitat and Habitat Areas of Particular Concern. Pacific Islands Fish. Sci. Cent. Natl. Mar. Fish. Sci. Cent. Admin. Rep. H-13-02

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers RW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015a) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-emdosymbiont community. Sci Rep 5:7652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-guldberg O (2015b) Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc open Sci 2:140297

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Methodological 211–252)

  • Chan YL, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD (2009) Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67–100 m depths) coral Leptoseris. BMC Ecol 9:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chauka LJ, Mbije NE, Kangwe SJ (2015) Seasonal fluctuations in photochemical efficiency of Symbiodinium harbored by three reef-building corals that differ in bleaching susceptibility. WIO J Mar Sci 14:1–9

    Google Scholar 

  • Cook CB, D’Elia CF, Muller-Parker G (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar Biol 98:253–262

    Article  CAS  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BEF, van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc Lond B 278:1840–1850

    Article  Google Scholar 

  • Correa AMS, Baker AC (2009) Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 28:81–93

    Article  Google Scholar 

  • Correa AMS, Brandt ME, Smith TB, Thornhill DJ, Baker AC (2009) Symbiodinium associations with diseased and healthy scleractinian corals. Coral Reefs 28:437–448

    Article  Google Scholar 

  • Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:1–10

    Article  Google Scholar 

  • Cunning R, Vaughan N, Gillette P, Capo TR, Maté JL, Backer AC (2015) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental chance. Ecology 96(5):1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky Z, Stambler N, Ben-Zion M, Mccloskey L, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B, Biol Sci 239:231–246

    Article  Google Scholar 

  • Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis (Ellis and Solander) in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95

    Google Scholar 

  • Fagoone I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: A long-term study in the field. Science 283:843–845

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Fay SA, Weber MX, Lipps JH (2009) The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs 28:717–726

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263

    Article  PubMed  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef coarls and relations to coral bleaching. Limnol Oceanogr 45(3):677–685

    Article  CAS  Google Scholar 

  • Frade PR, De Jongh F, Vermeulen F, van Bleijswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Granados-Cifuentes C, Rodriguez-Lanetty M (2011) The use of high-resolution melting analysis for genotyping Symbiodinium strains: a sensitive and fast approach. Mol Ecol Resour 11:394–399

    Article  PubMed  Google Scholar 

  • Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2:e386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic Coral Ecosystems: Characterization, Ecology, and Management”. Coral Reefs 29:247–251

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Hume BCC, D’Angelo C, Cunnington A, Smith EG, Wiedenmann J (2014) The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs? Coral Reefs 33:267–272

    Article  Google Scholar 

  • Jamieson GS, Pellegrin N, Jesson S (2007) Taxonomy and zoogeography of cold-water corals in coastal British Columbia. Conserv Adapt Manag Seamount Deep Coral Ecosyst 215–229

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, ca and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Jones RJ (1997) Zooxanthellae loss as a bioassay for assessing stress in corals. Mar Ecol Prog Ser 149:163–171

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77

    Article  CAS  Google Scholar 

  • Kaiser P, Schlichter D, Fricke HW (1993) Influence of light on algal symbionts of the deep water coral Leptoseris fragilis. Mar Biodivers 117:45–52

    Google Scholar 

  • Klepac CN, Beal J, Kenkel CD, Sproles A, Polinski JM, Williams MA, Matz MV, Voss JD (2015) Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar Ecol Prog Ser 532:137–151

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Ladriére O, Penin L, van Lierde E, Vidal-Dupiol J, Kayal M, Roberty S, Poulicek M, Adjeroud M (2014) Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps: a small-scale approach along environmental gradients around Moorea (French Polynesia). J Mar Biol Assoc UK 94(1):65–74

    Article  Google Scholar 

  • Lajeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Lee SY, Gil-Agudelo DL, Knowlton N, Jeong HJ (2015) Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist “zooxanthella” found in bleached and diseased tissues of Caribbean reef corals. Eur J Phycol 50:223–238

    Article  Google Scholar 

  • Lajeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    Article  PubMed  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6(12):e29013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesser M, Falcón L, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152

    Article  CAS  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR, McIlwain JL (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35:125–137

    Article  Google Scholar 

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: Advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Marcelino LA, Westneat MW, Stoyneva V, Henss J, Rogers JD, Radosevich A, Turzhitsky V, Siple M, Fang A, Swain TD, Fung J, Backman V (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8(4):e61492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091

    Article  PubMed  CAS  Google Scholar 

  • Mieog JC, Van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: Implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Nir O, Gruber DF, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089–1100

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: Community Ecology Package

  • Paradis E (2010) Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  PubMed  CAS  Google Scholar 

  • Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: s. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. J Phycol 51:850–858

    Article  PubMed  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in sortif foraminiferans. Marine Biology 139:1069–1078

    Article  Google Scholar 

  • Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 7:e29816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc J 34:82–91

    Article  Google Scholar 

  • Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One 9:e94297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rezak B, Bright TJ, McGrail DW (1985) Reefs and banks of the Northwest Gulf of Mexico: their geological, biological, and physical dynamics. Wily, New York

    Google Scholar 

  • Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733

    Article  PubMed  CAS  Google Scholar 

  • Sampayo E, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  PubMed  CAS  Google Scholar 

  • Santos SR, Shearer TL, Hannes TL, Coffroth MA (2004) Fine scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol Ecol 13:459–469

    Article  PubMed  CAS  Google Scholar 

  • Saunder BK, Muller-Parker G (1997) The effects of temperature and light on two algal populations in the temperate sea anemone Anthopleura elegantissima (Brandt, 1835). J Exp Mar Bio Ecol 211:213–224

    Article  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal HG, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Article  Google Scholar 

  • Scheufen T, Iglesias-Prieto R, Susana Enríquez (2017) Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front Mar Sci 4:309

    Article  Google Scholar 

  • Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, Nunes FLD, Baker AC (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    Article  PubMed  CAS  Google Scholar 

  • Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc Biol Sci 279:2609–2618

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith EG, D’Angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc R Soc Lond B 284:20170320

    Article  Google Scholar 

  • Stat M, Pochon X, Cowie ROM, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96

    Article  CAS  Google Scholar 

  • Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:1–9

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifcats confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  PubMed  CAS  Google Scholar 

  • Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, McCabe Reynolds J, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6(12):e29535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2013) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  PubMed  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low light and extremely low light. J Exp Mar Biol Ecol 263:211–225

    Article  Google Scholar 

  • Tonk L, Bongaerts P, Sampayo EM, Hoegh-Guldberg O (2013) SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol 13:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler M, Roder C, Büchel C, Voolstra C (2015a) Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association. Mar Ecol Prog Ser 533:149–161

    Article  CAS  Google Scholar 

  • Ziegler M, Roder CM, Buchel C, Voolstra CR (2015b) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci 2:1–10

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to staff of the Flower Garden Banks National Marine Sanctuary, the crew of the R/V Manta, the University of North Carolina at Wilmington Undersea Vehicle Program, and the divers for their assistance with sample collection. All samples were collected under permit number FGBNMS-2014-014-A1. We also thank the Genomic Sequencing and Analysis Facility at the University of Texas at Austin and the Scripps Research Institutes in Jupiter, Florida, and La Jolla, California, for sequencing services. We appreciate contributions by M Studivan on analysis of temperature data. This study was funded by the NOAA Office of Ocean Exploration and Research under awards NA09OAR4320073 and NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Florida Atlantic University’s Harbor Branch Oceanographic Institute. Additional funding was provided by a donation from the Danbury Fund to Harbor Branch Oceanographic Institute and by a Florida Atlantic University Graduate Research and Inquiry Program grant. This is Harbor Branch Oceanographic Institute contribution number 2150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Polinski.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic editor Simon Davy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polinski, J.M., Voss, J.D. Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37, 779–789 (2018). https://doi.org/10.1007/s00338-018-1701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1701-2

Keywords

Navigation