Skip to main content

Advertisement

Log in

Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host–algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta (Symbiodinium C15) and Pocillopora damicornis (Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme (Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity (D. nummiforme) to a range of 2.0–4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Ben-Zvi O, Eyal G, Loya Y (2014) Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 2014:1–12

    Google Scholar 

  • Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938

    Article  CAS  Google Scholar 

  • Brown B (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129–138

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  PubMed  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 589:388–398

    Article  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BEF, Van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc Lond B Biol Sci 278:1840–1850

    Article  Google Scholar 

  • Davy SK, Cook C (2001) The relationship between nutritional status and carbon flux in the zooxanthellate sea anemone, Aiptasia pallida. Mar Biol 139:999–1005

    Article  CAS  Google Scholar 

  • Davy SK, Lucas IAN, Turner JR (1996) Carbon budgets in temperate anthozoan–dinoflagellate symbioses. Mar Biol 126:773–783

    Article  Google Scholar 

  • Dudgeon SR, Aronson RB, Bruno JF, Precht WF (2010) Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser 413:201–216

    Article  Google Scholar 

  • Edmunds PJ, Carpenter RC, Comeau S (2013) Understanding the threats of ocean acidification to coral reefs. Oceanography 26:149–152

    Article  Google Scholar 

  • Engebretson HP, Muller-Parker G (1999) Translocation of photosynthetic carbon from two algal symbionts to the sea anemone Anthopleura elegantissima. Biol Bull 197:72–81

    Article  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on corals enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46:86–94

    Article  CAS  Google Scholar 

  • Fitt W (1985) Effect of different strains of the zooxanthella Symbiodinium microadriaticum on growth and survival of their coelenterate and molluscan hosts. Proc 5th Int Coral Reef Symp 6:131–136

  • Fitt W, Brown BE, Warner M, Dunne R (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Gibbin EM, Davy SK (2014) The photo-physiological response of a model cnidarian–dinoflagellate symbiosis to CO2-induced acidification at the cellular level. J Exp Mar Bio Ecol 457:1–7

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy for photosynthetic products in evolutionarily distinct phytoplankton species. New Phytol 198:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Hawkins TD, Krueger T, Wilkinson SP, Fisher PL, Davy SK (2015) Antioxidant responses to heat and light stress differ with habitat in a common reef coral. Coral Reefs 34:1229–1241

    Article  Google Scholar 

  • Hennige SJ, McGinley MP, Grottoli AG, Warner ME (2011) Photoinhibition of Symbiodinium spp. within the reef corals Montastraea faveolata and Porites astreoides: implications for coral bleaching. Mar Biol 158:2515–2526

    Article  CAS  Google Scholar 

  • Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceangr 56:139–146

    Article  Google Scholar 

  • Hoadley KD, Rollison D, Pettay DT, Warner ME (2015) Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts. Limnol Oceanogr 60:2108–2120

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Jin P, Gao K, Villafae VE, Campbell DA, Helbling EW (2013) Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation. Plant Physiol 162:2084–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7:e34659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kitahara MV, Lin M-F, Forêt S, Huttley G, Miller DJ, Chen CA (2014) The “naked coral” hypothesis revisited—evidence for and against scleractinian monophyly. PLoS One 9:e94774

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolber Z, Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys 1367:88–107

    Article  CAS  Google Scholar 

  • Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2015) Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 190:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kuguru B, Achituv Y, Gruber DF, Tchernov D (2010) Photoacclimation mechanisms of corallimorpharians on coral reefs: photosynthetic parameters of zooxanthellae and host cellular responses to variation in irradiance. J Exp Mar Bio Ecol 394:53–62

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • Leal MC, Hoadley K, Pettay DT, Grajales A, Calado R, Warner ME (2015) Symbiont type influences trophic plasticity of a model cnidarian–dinoflagellate symbiosis. J Exp Biol 218:858–863

    Article  PubMed  Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U S A 103:9096–9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrook R, Anthony KR, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034

    Article  CAS  PubMed  Google Scholar 

  • Norström AV, Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306

    Article  Google Scholar 

  • Oakley CA, Hopkinson BM, Schmidt GW (2014) Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium. Coral Reefs 33:543–552

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Roberty S, Berne N, Bailleul B, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91

    Article  CAS  PubMed  Google Scholar 

  • Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579

    Article  CAS  Google Scholar 

  • Rodriguez-Román A, Hernández-Pech X, Thomé PE, Enriquez S, Iglesias-Prieto R (2006) Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol Oceanogr 51:2702–2710

    Article  Google Scholar 

  • Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann JH (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8:e75049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shick JM, Dowse HB (1985) Genetic basis of physiological variation in natural populations of sea anemones: Intra-and interclonal analyses of variance. In: Gibbs PE (ed) Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16–21 September 1984. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Shick JM, Iglic K, Wells ML, Trick CG, Doyle J, Dunlap WC (2011) Responses to iron limitation in two colonies of Stylophora pistillata exposed to high temperature: implications for coral bleaching. Limnol Oceangr 56:813–828

    Article  CAS  Google Scholar 

  • Suggett DJ, MacIntyre HL, Kana TM, Geider RJ (2009) Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquat Microb Ecol 56:147–162

    Article  Google Scholar 

  • Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384

    Article  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Article  CAS  PubMed  Google Scholar 

  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Tye Pettay D, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Chang Biol 18:3015–3025

    Article  Google Scholar 

  • Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR (2013) Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol 161:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkachenko KS, Wu B-J, Fang L-S, Fan T-Y (2007) Dynamics of a coral reef community after mass mortality of branching Acropora corals and an outbreak of anemones. Mar Biol 151:185–194

    Article  Google Scholar 

  • Towanda T, Thuesen EV (2012) Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Open Biol 1:615–621

    Article  CAS  Google Scholar 

  • Tremblay P, Fine M, Maguer JF, Grover R (2013) Ocean acidification increases photosynthate translocation in a coral–dinoflagellates symbiosis. Biogeosciences 10:83–109

    Article  Google Scholar 

  • Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pagès C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Trimborn S, Thoms S, Petrou K, Kranz SA, Rost B (2014) Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: short-term versus acclimation effects. J Exp Mar Bio Ecol 451:44–54

    Article  CAS  Google Scholar 

  • Wangpraseurt D, Larkum AWD, Ralph PJ, Kuhl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner M, Fitt W, Schmidt G (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96:8007–8012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis VM (1993) Effect of dissolved inorganic carbon concentration on the photosynthesis of the symbiotic sea anemone Aiptasia pulchella Carlgren: role of carbonic anhydrase. J Exp Mar Bio Ecol 174:209–225

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Weisz JB, Massaro AJ, Ramsby BD, Hill MS (2010) Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull 219:189–197

    PubMed  Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ‘bleaching’conditions. Mar Ecol Prog Ser 396:145–152

    Article  CAS  Google Scholar 

  • Yao W, Byrne RH (1998) Simplified seawater alkalinity analysis: use of linear array spectrometers. Deep Sea Res Part I Oceanogr Res Pap 45:1383–1392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Hoadley.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoadley, K.D., Pettay, D.T., Dodge, D. et al. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs 35, 529–542 (2016). https://doi.org/10.1007/s00338-016-1404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1404-5

Keywords

Navigation