Skip to main content
Log in

Genetic evidence supports larval retention in the Western Caribbean for an invertebrate with high dispersal capability (Ophiothrix suensonii: Echinodermata, Ophiuroidea)

Coral Reefs Aims and scope Submit manuscript

Abstract

The brittle star Ophiothrix suensonii is a common coral reef sponge commensal with high dispersal potential. Here, we utilize COI sequence data from 264 O. suensonii individuals collected from 10 locations throughout Florida and the Caribbean to investigate dispersal dynamics and demographic history. Locations separated by up to 1,700 km lacked genetic differentiation, confirming the ability for long-range dispersal. However, significant differentiation was detected among other regions. Samples from Utila, Honduras showed the greatest differentiation, suggesting that the circulation of the Mesoamerican gyre could be a significant factor restricting gene flow in this region. Demographic analyses provided strong evidence for a population expansion, possibly out of Florida, through the Caribbean, and into Honduras, which commenced in the early Pleistocene. However, the presence of a clade of rare haplotypes, which split much earlier (mid-Pliocene), indicates that O. suensonii persisted long before its recent expansion, suggesting a cyclic history of population contraction and expansion. Finally, patterns of gene flow are not concordant with contemporary surface currents; rather, they reflect historical movements possibly linked with changes in circulation during periods of Pleistocene climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Almany G, Connolly S, Heath D, Hogan J, Jones G, McCook L, Mills M, Pressey R, Williamson D (2009) Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28:339–351

    Article  Google Scholar 

  • Andras JP, Kirk NL, Harvell CD (2011) Range-wide population genetic structure of Symbiodinium associated with the Caribbean sea fan coral, Gorgonia ventalina. Mol Ecol 20:2525–2542

    Article  PubMed  Google Scholar 

  • Andras JP, Rypien KL, Harvell CD (2013) Range-wide population genetic structure of the Caribbean sea fan coral, Gorgonia ventalina. Mol Ecol 22:56–73

    Article  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) Biogeography: a marine Wallace’s line? Nature 406:692–693

    Article  CAS  PubMed  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11:659–674

    Article  CAS  PubMed  Google Scholar 

  • Barcia AR, Lopez GE, Hernandez D, García-Machado E (2005) Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Mol Ecol 14:2933–2942

    Article  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Paris CB, Chérubin LM (2006) A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr 51:1969–1981

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57:289–300

    Google Scholar 

  • Benzie JA, Williams ST (1997) Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution: 51:768–783

  • Black KP (1993) The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs. Coral Reefs 12:43–53

    Article  Google Scholar 

  • Black KP, Moran PP (1991) Influence of hydrodynamics on the passive dispersal and initial recruitment of larvae of Acanthaster planci (Echinodermata: Asteroidea) on the Great Barrier Reef. Mar Ecol Prog Ser 69:55–65

    Article  Google Scholar 

  • Boissin E, Stöhr S, Chenuil A (2011) Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid? Mol Ecol 20:4737–4755

    Article  CAS  PubMed  Google Scholar 

  • Bosch I (1992) Symbiosis between bacteria and oceanic clonal sea star larvae in the western North Atlantic Ocean. Mar Biol 114:495–502

    Article  Google Scholar 

  • Briones-Fourzán P, Candela J, Lozano-Alvarez E (2008) Postlarval settlement of the spiny lobster Panulirus argus along the Caribbean coast of Mexico: patterns, influence of physical factors, and possible sources of origin. Limnol Oceanogr 53:970–985

    Article  Google Scholar 

  • Burgess SC, Treml EA, Marshall DJ (2012) How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93:1378–1387

    Article  PubMed  Google Scholar 

  • Butler MJ, Paris CB, Goldstein JS, Matsuda H, Cowen RK (2011) Behavior constrains the dispersal of long-lived spiny lobster larvae. Mar Ecol Prog Ser 422:223–237

    Article  Google Scholar 

  • Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3:102–113

    Article  CAS  PubMed  Google Scholar 

  • Cho W, Shank TM (2010) Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Mar Ecol 31:121–143

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Colgan D, Byrne M, Rickard E, Castro L (2005) Limited nucleotide divergence over large spatial scales in the asterinid sea star Patiriella exigua. Mar Biol 146:263–270

    Article  CAS  Google Scholar 

  • Colin PL (2002) A new species of sponge-dwelling Elacatinus (Pisces: Gobiidae) from the western Caribbean. Zootaxa 106:1–7

    Google Scholar 

  • Collette BB (1983) Two new species of coral toadfishes, family Batrachoididae, genus Sanopus, from Yucatan, Mexico, and Belize. Proc Biol Soc Wash 96:719–724

    Google Scholar 

  • Condie S, Mansbridge J, Cahill M (2011) Contrasting local retention and cross-shore transports of the East Australian Current and the Leeuwin Current and their relative influences on the life histories of small pelagic fishes. Deep Sea Res Part II 58:606–615

    Article  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davoult D, Gounin F, Richard A (1990) Dynamique et reproduction de la population Ophiothrix fragilis (Abildgaard) du détroit du Pas de Calais (Manche orientale). J Exp Mar Biol Ecol 138:201–216

    Article  Google Scholar 

  • Díaz-Ferguson E, Haney R, Wares J, Silliman B (2010) Population genetics of a Trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS One 5:e12675

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards S, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    CAS  PubMed  Google Scholar 

  • Eytan RI, Hellberg ME (2010) Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64:3380–3397

    Article  CAS  PubMed  Google Scholar 

  • Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O (2012) Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol 21:1143–1157

    Article  PubMed  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gherardi J-M, Labeyrie L, McManus J, Francois R, Skinner L, Cortijo E (2005) Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet Sci Lett 240:710–723

    Article  CAS  Google Scholar 

  • Graber HC, Limouzy-Paris CB (1997) Transport patterns of tropical reef fish larvae by spin-off eddies in the Straits of Florida. Oceanography 10:68–71

    Google Scholar 

  • Gruenthal K, Burton R (2008) Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. J Exp Mar Biol Ecol 355:47–58

    Article  CAS  Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annual Review of Ecology, Evolution, and Systematics 40:291–310

    Article  Google Scholar 

  • Hemond EM, Vollmer SV (2010) Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida. PLoS One 5:e8652

    Article  PubMed Central  PubMed  Google Scholar 

  • Hendler G (1975) Adaptational significance of the patterns of ophiuroid development. Am Zool 15:691–715

    Google Scholar 

  • Hendler G, Miller J, Pawson D, Kier P (1995) Echinoderms of Florida and the Caribbean: Sea stars, sea urchins, and allies. Smithsonian Institution, Washington and London

    Google Scholar 

  • Henkel T, Pawlik J (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol 146:301–313

    Article  Google Scholar 

  • Hunt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar Ecol Prog Ser 92:179

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson GD, Brothers EB (1989) Acanthemblemaria paula, a new diminutive Chaenopsid (Pisces, Blennioidei) from Belize, with comments on life-history. Proc Biol Soc Wash 102:1018–1030

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee TN, Williams E (1999) Mean distribution and seasonal variability of coastal currents and temperature in the Florida Keys with implications for larval recruitment. Bull Mar Sci 64:35–56

    Google Scholar 

  • Lee T, Ó Foighil D (2005) Placing the Floridian marine genetic disjunction into a regional evolutionary context using the scorched mussel, Brachidontes exustus, species complex. Evolution 59:2139–2158

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality through the Caribbean. Science 226:335–337

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    Article  CAS  PubMed  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4. Sinauer, Sunderland, MA

    Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S (2010) Phenotype-environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140

    Article  CAS  PubMed  Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB, Berg CJ, Orr KS (1989) Population structure, larval dispersal, and gene flow in the queen conch, Strombus gigas, of the Caribbean. Biol Bull 177:356–362

    Article  Google Scholar 

  • Mladenov PV (1985) Observations on reproduction and development of the Caribbean brittle star Ophiothrix suensoni (Echinodermata: Ophiuroidea). Bull Mar Sci 36:384–388

    Google Scholar 

  • Mullaney TJ, Suthers IM (2013) Entrainment and retention of the coastal larval fish assemblage by a short-lived, submesoscale, frontal eddy of the East Australian Current. Limnol Oceanogr 58:1546–1556

    Article  Google Scholar 

  • Muths D, Jollivet D, Gentil F, Davoult D (2009) Large-scale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis. Aquat Biol 5:117–132

    Article  Google Scholar 

  • Naro-Maciel E, Reid B, Holmes KE, Brumbaugh DR, Martin M, DeSalle R (2011) Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Mar Biol 158:2027–2041

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas H, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4. http://www.nrbsc.org/gfx/genedoc/ebinet.htm

  • O’Hara TD, England PR, Gunasekera RM, Naughton KM (2014) Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep Sea Research Part I 84:18–28

    Article  Google Scholar 

  • Ovenden JR, Salini J, O’Connor S, Street R (2004) Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indies triangle. Mol Ecol 13:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR, Warner RR (2003) Why gobies are like hobbits. Science 299:51–52

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    Article  Google Scholar 

  • Paris CB, Chérubin LM, Srinivasan A, Cowen RK (2007) Surfing, spinning, or diving from reef to reef: how does it change population connectivity? Mar Ecol Prog Ser 347:285–300

    Article  Google Scholar 

  • Paris CB, Aldana-Aranda D, Pérez-Pérez M, Kool J (2008) Connectivity of Queen conch, Strombus gigas, populations from Mexico. Proc 11th Coral Reef Symp: 439–443

  • Pérez-Portela R, Almada V, Turon X (2013) Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zool Scr 42:151–169

    Article  Google Scholar 

  • Perrin C, Wing SR, Roy MS (2004) Effects of hydrographic barriers on population genetic structure of the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealand fiords. Mol Ecol 13:2183–2195

    Article  CAS  PubMed  Google Scholar 

  • Pybus OG, Rambaut A (2002) GENIE: estimating demographic history from molecular phylogenies. Bioinformatics 18:1404–1405

    Article  CAS  PubMed  Google Scholar 

  • Richards VP, Thomas JD, Stanhope MJ, Shivji MS (2007) Genetic connectivity in the Florida reef system: comparative phylogeography of commensal invertebrates with contrasting reproductive strategies. Mol Ecol 16:139–157

    Article  CAS  PubMed  Google Scholar 

  • Riginos C, Buckley Y, Blomberg S, Treml EA (2014) Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am Nat 184:52–64

    Article  PubMed  Google Scholar 

  • Riginos C, Douglas KE, Jin Y, Shanahan DF, Treml EA (2011) Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34:566–575

    Article  Google Scholar 

  • Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B: Biol Sci 272:573–579

    Article  Google Scholar 

  • Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8:157

    Article  PubMed Central  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the “world’s most common brittlestar”. Proc R Soc Lond Ser B: Biol Sci 269:1017–1023

    Article  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Salas E, Molina-Ureña H, Walter RP, Heath DD (2010) Local and regional genetic connectivity in a Caribbean coral reef fish. Mar Biol 157:437–445

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis, version 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland

  • Selkoe K, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305

    Article  Google Scholar 

  • Sheinbaum J, Candela J, Badan A, Ochoa J (2002) Flow structure and transport in the Yucatan Channel. Geophys Res Lett 29:10-11–10-14

  • Sheng J, Tang L (2003) A numerical study of circulation in the western Caribbean Sea. J Phys Oceanogr 33:2049–2069

  • Sheng J, Tang L (2004) A two-way nested-grid ocean-circulation model for the Meso-American Barrier Reef System. Ocean Dynamics 54:232–242

    Article  Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

  • Silberman J, Sarver S, Walsh P (1994) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608

    Article  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

  • Sotka EE, Wares JP, Barth JA, Grosberg RK, Palumbi SR (2004) Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Mol Ecol 13:2143–2156

    Article  CAS  PubMed  Google Scholar 

  • Sponer R, Roy MS (2002) Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56:1954–1967

    Article  PubMed  Google Scholar 

  • Strimmer K, Pybus OG (2001) Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol 18:2298–2305

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2006) Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol 15:695–707

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Roy MS (2003) Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. J Biogeogr 30:1787–1796

    Article  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B: Biol Sci 277:1685–1694

    Article  Google Scholar 

  • Williams S, Benzie J (1997) Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata. Mol Ecol 6:559–573

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mary Kuhner for data analysis advice, Ruth Vargo for help in the laboratory, Christine and Ted Testerman, Eric Bartels, Walt DeMartini, Robbie Gibson, Adolphe Debrot and the Carmabi Foundation, Guy Harvey, Matt Potenski, Tyler Smith, and the Eco Marine Dive Shop for help with sample collection. We also appreciate the constructive comments given by three anonymous reviewers. This research was supported by a grant to MSS through the NOAA Center for Sponsored Coastal Ocean Science award # NA12NOS4260144 to the National Coral Reef Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Richards.

Additional information

Communicated by Handling Editor Mark Vermeij

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, V.P., DeBiasse, M.B. & Shivji, M.S. Genetic evidence supports larval retention in the Western Caribbean for an invertebrate with high dispersal capability (Ophiothrix suensonii: Echinodermata, Ophiuroidea). Coral Reefs 34, 313–325 (2015). https://doi.org/10.1007/s00338-014-1237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1237-z

Keywords

Navigation