Skip to main content

Advertisement

Log in

Structure and palaeoenvironmental implications of inter-branch coenosteum-rich skeleton in corymbose Acropora species

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2015

Abstract

Coral reefs provide an increasingly important archive of palaeoclimate data that can be used to constrain climate model simulations. Reconstructing past environmental conditions may also provide insights into the potential of reef systems to survive changes in the Earth’s climate. Reef-based palaeoclimate reconstructions are predominately derived from colonies of massive Porites, with the most abundant genus in the Indo-Pacific—Acropora—receiving little attention owing to their branching growth trajectories, high extension rates and secondary skeletal thickening. However, inter-branch skeleton (consisting of both coenosteum and corallites) near the bases of corymbose Acropora colonies holds significant potential as a climate archive. This region of Acropora skeleton is atypical, having simple growth trajectories with parallel corallites, approximately horizontal density banding, low apparent extension rates and a simple microstructure with limited secondary thickening. Hence, inter-branch skeleton in Acropora bears more similarities to the coralla of massive corals, such as Porites, than to traditional Acropora branches. Cyclic patterns of Sr/Ca ratios in this structure suggest that the observed density banding is annual in nature, thus opening up the potential to use abundant corymbose Acropora for palaeoclimate reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363

    Article  Google Scholar 

  • Allison N, Finch AA, Tudhope AW, Newville M, Sutton SR, Ellam RM (2005) Reconstruction of deglacial sea surface temperatures in the tropical Pacific from selective analysis of a fossil coral. Geophys Res Lett 32:L17609

    Article  Google Scholar 

  • Bagnato S, Linsley BK, Howe SS, Wellington GM, Salinger J (2004) Evaluating the use of the massive coral Diploastrea heliopora for paleoclimate reconstruction. Paleoceanography 19(PA1032):p12

    Google Scholar 

  • Barnes DJ, Devereux MJ (1988) Variations in skeletal architecture associated with density banding in the hard coral Porites. J Exp Mar Biol Ecol 121:37–54

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Biol Ecol 126:119–134

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108

    Article  Google Scholar 

  • Barnes DJ, Taylor RB, Lough JM (1995) On the inclusion of trace materials into massive coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to growth processes. J Exp Mar Biol Ecol 194:251–275

    Article  CAS  Google Scholar 

  • Buddemeier RW (1974) Environmental controls over annual and lunar monthly cycles in hermatypic coral calcification. Proc 2nd Int Coral Reef Symp 2:259–267

  • Calvo E, Marshall JF, Pelejero C, McCulloch MT, Gagan MK, Lough JM (2007) Interdecadal climate variability in the Coral Sea since 1708 AD. Palaeogeogr Palaeoclimatol Palaeoecol 248:190–201

    Article  Google Scholar 

  • Cardinal D, Hamelin B, Bard E, Patzold J (2001) Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176:213–233

    Article  CAS  Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232:408–428

    Article  Google Scholar 

  • Damassa TD, Cole JE, Barnett HR, Ault TR, McClanahan TR (2006) Enhanced multidecadal climate variability in the seventeenth century from coral isotope records in the western Indian Ocean. Paleoceanography 21:PA2016. p 15

    Article  Google Scholar 

  • DeLong KL, Quinn TM, Taylor FW (2007) Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: a replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22:PA4212, p 18

    Article  Google Scholar 

  • DeLong KL, Flannery JA, Maupin CR, Poore RZ, Quinn TM (2011) A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 307:117–128

    Article  Google Scholar 

  • DeLong KL, Quinn TM, Taylor FW, Shen CC, Lin K (2013) Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeogr Palaeoclimatol Palaeoecol 373:6–24

    Article  Google Scholar 

  • Dodge RE, Szmant AM, Garcia R, Swart PK, Forester A, Leder JJ (1993) Skeletal structural basis of density banding in the reef coral Montastrea annularis. 7th Int Coral Reef Symp 1:186–195

  • Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A.D.: the δ18O record of climate variability in Galápagos corals. Paleoceanography 9:291–315

    Article  Google Scholar 

  • Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64:3123–3132

    Article  CAS  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325

    Article  CAS  Google Scholar 

  • Felis T, Patzold J, Loya Y (2003) Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22:328–336

    Article  Google Scholar 

  • Felis T, Suzuki A, Kuhnert H, Dima M, Lohmann G, Kawahata H (2009) Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37:527–530

    Article  CAS  Google Scholar 

  • Gagan MK, Chivas AR, Isdale PJ (1994) High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers. Earth Planet Sci Lett 121:549–558

    Article  Google Scholar 

  • Gagan MK, Dunbar GB, Suzuki A (2012) The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry. Paleoceanography 27(PA1203):p 16

    Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quaternary Sci Rev 19:45–64

    Article  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Gallup CD, Olson DM, Edwards RL, Gruhn LM, Winter A, Taylor FW (2006) Sr/Ca-Sea surface temperature calibration in the branching Caribbean coral Acropora palmata. Geophys Res Lett 33:L03606

    Article  Google Scholar 

  • Gladfelter EH (1982) Skeletal development in Acropora cervicornis: 1. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1:45–51

    Article  Google Scholar 

  • Gladfelter EH, Gladfelter WB (1979) Growth and total carbonate production by Acropora palmata on a windward reef. Environmental studies of Buck Island Reef National Monument II, A Rept for the US National Park Service, pp III-1–8

  • Gladfelter EH, Monahan RK, Gladfelter WB (1978) Growth rates of five reef building corals in the northeastern Caribbean. Bull Mar Sci 28:728–734

    Google Scholar 

  • Goodkin NF, Hughen KA, Cohen AL (2007) A multicoral calibration method to approximate a universal equation relating Sr/Ca and growth rate to sea surface temperature. Paleoceanography 22:PA1214

    Article  Google Scholar 

  • Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and Δ14C proxy records. Earth Sci Rev 81:67–91

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  CAS  Google Scholar 

  • Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific Sea surface salinity at end of Little Ice Age. Science 295:1511–1514

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge and New York

  • Jell JS, Webb GE (2012) Geology of Heron Island and adjacent reefs, Great Barrier Reef, Australia. Episodes 35:110–119

    Google Scholar 

  • LaVigne M, Field MP, Anagnostou E, Grottoli AG, Wellington GM, Sherrell RM (2008) Skeletal P/Ca tracks upwelling in Gulf of Panamá coral: evidence for a new seawater phosphate proxy. Geophys Res Lett 35:L05604

    Article  Google Scholar 

  • LaVigne M, Matthews KA, Grottoli AG, Cobb KM, Anagnostou E, Cabioch G, Sherrell RM (2010) Coral skeleton P/Ca proxy for seawater phosphate: multi-colony calibration with a contemporaneous seawater phosphate record. Geochim Cosmochim Acta 74:1282–1293

    Article  CAS  Google Scholar 

  • Lazar B, Enmar R, Schossberger M, Bar-Matthews M, Halicz L, Stein M (2004) Diagenetic effects on the distribution of uranium in live and Holocene corals from the Gulf of Aqaba. Geochim Cosmochim Acta 68:4583–4593

    Article  CAS  Google Scholar 

  • Le Bec N, Juillet-Leclerc A, Corrège T, Blamart D, Delcroix T (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys Res Lett 27:3897–3900

    Article  Google Scholar 

  • Le Tissier MDAA, Clayton B, Brown BE, Spencer Davis P (1994) Skeletal correlates of coral density banding and an evaluation of radiography as used in sclerochronology. Mar Ecol Prog Ser 110:29–44

    Article  Google Scholar 

  • Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18:13–27

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1990) Intra-annual timing of density band formation of Porites coral from the central Great Barrier Reef. J Exp Mar Biol Ecol 135:35–57

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1982) Internal structure and Holocene evolution of One Tree Reef, southern Great Barrier Reef. Coral Reefs 1:21–28

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from Paleoclimate Archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 383–464

    Google Scholar 

  • Maupin CR, Quinn TM, Halley RB (2008) Extracting a climate signal from the skeletal geochemistry of the Caribbean coral Siderastrea siderea. Geochem Geophys Geosyst 9:Q12012

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  CAS  Google Scholar 

  • McGregor HV, Gagan MK (2003) Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochim Cosmochim Acta 67:2147–2156

    Article  CAS  Google Scholar 

  • Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci Rev 71:1–75

    Article  Google Scholar 

  • Morgan KM, Kench PS (2012) Skeletal extension and calcification of reef-building corals in the central Indian Ocean. Mar Environ Res 81:78–82

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AD, Zhao JX, Feng YX, Hu WP, Yu KF, Gasparon M, Pham TB, Clark TR (2013) Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record. Coral Reefs 32:181–193

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (2009) Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies 55:161–201

    Article  Google Scholar 

  • Oliver JK (1984) Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 3:139–147

    Article  Google Scholar 

  • Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309:2204–2207

    Article  CAS  PubMed  Google Scholar 

  • Pretet C, Reynaud S, Ferrier-Pagès C, Gattuso J-P, Kamber BS, Samankassou E (2014) Effect of salinity on the skeletal chemistry of cultured scleractinian zooxanthellate corals: Cd/Ca ratio as a potential proxy for salinity reconstruction. Coral Reefs 33:169–180

    Article  Google Scholar 

  • Ribaud-Laurenti A, Hamelin B, Montaggioni L, Cardinal D (2001) Diagenesis and its impact on Sr/Ca ratio in Holocene Acropora corals. Int J Earth Sci 90:438–451

    Article  CAS  Google Scholar 

  • Roche RC, Abel RL, Johnson KG, Perry CT (2011) Spatial variation in porosity and skeletal element characteristics in apical tips of the branching coral Acropora pulchra (Brook 1891). Coral Reefs 30:195–201

    Article  Google Scholar 

  • Roche RC, Perry CT, Smithers SG, Leng MJ, Grove CA, Sloane HJ, Unsworth CE (2014) Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef. Holocene 24:885–897

    Article  Google Scholar 

  • Sayani HR, Cobb KM, Cohen AL, Elliott WC, Nurhati IS, Dunbar RB, Rose KA, Zaunbrecher LK (2011) Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochim Cosmochim Acta 75:6361–6373

    Article  CAS  Google Scholar 

  • Shapiro A (1980) Growth rate, strength, and internal structure as environmental indicators in the reef-building coral, Acropora palmata. Geol Soc Am Abst with Programs 12:1

    Google Scholar 

  • Shinjo R, Asami R, Huang KF, You CF, Iryu Y (2013) Ocean acidification trend in the tropical North Pacific since the mid-20th century reconstructed from a coral archive. Mar Geol 342:58–64

    Article  CAS  Google Scholar 

  • Shirai K, Kawashima T, Sowa K, Watanabe T, Nakaniori T, Takahata N, Arnakawa H, Sano Y (2008) Minor and trace element incorporation into branching coral Acropora nobilis skeleton. Geochim Cosmochim Acta 72:5386–5400

    Article  CAS  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48:497–530

    Google Scholar 

  • Taylor RB, Barnes DJ, Lough JM (1993) Simple models of density band formation in massive corals. J Exp Mar Biol Ecol 167:109–125

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world, vol 1. Australian Institute of Marine Science, Townsville, p463

    Google Scholar 

  • Wallace CC (1994) New species and a new species-group of the coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) from Indo-Pacific locations. Invertebr Taxon 8:961–988

    Article  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. CSIRO Publishing, Australia, p421

    Google Scholar 

  • Watanabe T, Gagan MK, Corrège T, Scott-Gagan H, Cowley J, Hantoro WS (2003) Oxygen isotope systematics in Diploastrea heliopora: new coral archive of tropical paleoclimate. Geochim Cosmochim Acta 67:1349–1358

    Article  CAS  Google Scholar 

  • Webb GE, Nothdurft LD, Zhao J-X, Price G, Opdyke BN (2011) “Still stand” diagenetic zone, Heron Reef, Great Barrier Reef: implications for dating, reef models, sea level reconstruction and environmental records. Abstracts, 11th International Symposium on Fossil Cnidaria and Sponges, Liège 19:186–187

  • Webster JM, Davies PJ (2003) Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef. Sediment Geol 159:61–80

    Article  Google Scholar 

  • Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346

    Article  CAS  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on Invertebrate Paleontology F Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, KS, USA, pp 328–444

    Google Scholar 

  • Wu HC, Linsley BK, Dassie EP, Schiraldi B, deMenocal PB (2013) Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi-site coral Sr/Ca records. Geochem Geophys Geosyst 14:1435–1453

    Article  CAS  Google Scholar 

  • Yu KF, Zhao JX, Wei GJ, Cheng XR, Chen TG, Felis T, Wang PX, Liu TS (2005) δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 218:57–73

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank senior radiographer Mr. Bede Yates and the staff at St. Vincent’s Private Hospital Radiography Department for providing initial CT scans and X-radiographs. Carden Wallace (Queensland Museum) aided with mid-Holocene coral identification. We are also grateful to the Central Analytical Research Facility at QUT for use of SEM equipment, Nicole Leonard who aided coral sampling and the two anonymous reviewers who improved the quality of this manuscript. Corals were collected under permits G03/9787.1 and G13/36379.1 from the Great Barrier Reef Marine Park Authority. This study was supported by Australian Research Council Discovery Grants DP1096184 and DP120101793, an Australian Wildlife Society University Grant and The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sadler.

Additional information

Communicated by Handling Editor Chris Perry

Electronic supplementary material

Below is the link to the electronic supplementary material.

338_2014_1228_MOESM1_ESM.eps

ESM Fig. 1: Scanning electron microscopy (SEM) images of the branch–inter-branch boundary in a) mid-Holocene and b) modern coral samples. Branch skeletal material is notably more thickened due to extensive secondary aragonite deposition, whereas the open matrix structure of the inter-branch region is less dense and appears to contain reduced thickening deposits. Note that the horizontal rung of the coenosteum does not extend into the corallite in ESM Fig. 1a (EPS 6180 kb)

338_2014_1228_MOESM2_ESM.eps

ESM Fig. 2: Inter-branch skeletal structures. Inter-branch corallite walls are a similar thickness to pillars and rungs, which can complicate identification. There appears to be a dominance of coenostial floors over plates, especially in the lower right-hand region of the figure (EPS 7340 kb)

338_2014_1228_MOESM3_ESM.eps

ESM Fig. 3: Dissepiments passing through the coral coenosteum. a) Dissepiments cross the coenosteum grid at varying angles and appear to be independent structures. Dashed box indicates the region displayed in b. b) Detailed section of the dissepiment underside revealing concentric growth structures (EPS 6246 kb)

338_2014_1228_MOESM4_ESM.eps

ESM Fig. 4: Formation of coenosteum rungs. Growth of horizontal rungs in the coenosteum framework may be a) unidirectional, b) bidirectional or c) interlocking (EPS 7673 kb)

338_2014_1228_MOESM5_ESM.eps

ESM Fig. 5: Thickening of coenostial rungs into floors. Formation of the coenostial floor is not clearly defined, but may be related to distally directed RADs that project into the open grid space from other rungs and are thickened by a thin layer of shingle deposits (EPS 3084 kb)

338_2014_1228_MOESM6_ESM.eps

ESM Fig. 6: Skeletal structures of a) massive Porites and b) Acropora inter-branch skeleton. The grid-like network of coenostial pillars and rungs within Acropora inter-branch skeleton is similar to that observed in the coenosteum of massive Porites, albeit at a large scale and with increased spacing between corallites (EPS 10283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadler, J., Webb, G.E. & Nothdurft, L.D. Structure and palaeoenvironmental implications of inter-branch coenosteum-rich skeleton in corymbose Acropora species. Coral Reefs 34, 201–213 (2015). https://doi.org/10.1007/s00338-014-1228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1228-0

Keywords

Navigation