Skip to main content

Advertisement

Log in

Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornis

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency (F v /F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond, B 276:3019–3025

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Aronson RB, Bruckner A, Moore J, Precht WF, Weil E (2008) Acropora cervicornis. IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1. <www.iucnredlist.org>

  • Baker AC, Glynn PWP, Riegl BM (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763

    Article  CAS  Google Scholar 

  • Burdige DJ, Zimmerman RC, Xinping H (2008) Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: The role of sea grasses. Limnol Oceanogr 53:549–565

    Article  CAS  Google Scholar 

  • Chalker BE (1981) Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol 63:135–141

    Article  Google Scholar 

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond, B 190:323–331

    Article  CAS  Google Scholar 

  • Chamberlain JA (1978) Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4:419–435

    Google Scholar 

  • Chappell J (1980) Coral morphology, diversity and reef growth. Nature 286:249–252

    Article  Google Scholar 

  • Cohen AL, McCorkle DC, de Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochemistry Geophysics Geosystems 10:1–12

    Article  Google Scholar 

  • Cooper TF, O’Leary RA, Lough JM (2012) Growth of Western Australian corals in the anthropocene. Science 335:593–596

    Article  CAS  PubMed  Google Scholar 

  • Courtney LA, Fisher WS, Raimondo S, Oliver LM, Davis WP (2007) Estimating 3-dimensional colony surface area of field corals. J Exp Mar Biol Ecol 351:234–242

    Article  Google Scholar 

  • Crabbe MJC, Smith DJ (2005) Sediment impacts on growth rates of Acropora and Porites corals from fringing reefs of Sulawesi, Indonesia. Coral Reefs 24:437–441

    Article  Google Scholar 

  • Default AM, Ninokawa A, Bramanti L, Cumbo VR, Fan T-Y, Edmunds PJ (2013) The role of light in mediating the effects of ocean acidification on coral calcification. J Exp Biol 216:1570–1577

    Article  Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res 37:755–766

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FFJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410

    Article  CAS  Google Scholar 

  • Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Global Change Biol 18:2173–2183

    Article  Google Scholar 

  • Falkowski P, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113

    Article  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Gladfelter EH, Monahan RK, Gladfelter WB (1978) Growth rates of five reef-building corals in the northeastern Caribbean. Bull Mar Sci 28:728–734

    Google Scholar 

  • Highsmith RC, Riggs AC, D’Antonio CM (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46:322–329

    Google Scholar 

  • Hoegh-Guldberg O (1988) A method for determining the surface area of corals. Coral Reefs 7:113–116

    Article  Google Scholar 

  • Hogarth WT (2006) Endangered and threatened species: final listing determinations for the elkhorn coral and staghorn coral. Fed Register 71:26852–26872

    Google Scholar 

  • Jaap WC (1974) Scleractinian growth rate studies. Proc Fl Keys Coral Reef Wrkshp. FL Dept Nat Res Coastal Coordinating Council. p 17

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral Reefs: Research Methods. UNESCO monographs on oceanographic methodology, Paris, pp 529–542

    Google Scholar 

  • Kendall JJ Jr, Powell EN, Connor SJ, Bright TJ, Zastrow CE (1985) Effects of turbidity on calcification rate, protein concentration and the free amino acid pool of the coral Acropora cervicornis. Mar Biol 87:33–46

    Article  CAS  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res C 110:C09S07.1–C09S07.16

    Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Oak Ridge National Laboratory

  • Lirman D (2000) Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. J Exp Mar Biol Ecol 251:41–57

    Article  PubMed  Google Scholar 

  • Lirman D, Thyberg T, Herlan J, Hill C, Young-Lahiff C, Schopmeyer SA, Huntington B, Santos R, Drury C (2010) Propagation of the threatened staghorn coral Acropora cervicornis: methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29:729–735

    Article  Google Scholar 

  • Lirman D, Schopmeyer SA, Manzello DP, Gramer LJ, Precht WF, Muller-Karger F, Banks K, Barnes B, Bartels E, Bourque A, Byrne J, Donahue S, Duquesnel J, Fisher L, Gilliam D, Hendee J, Johnson M, Maxwell K, McDevitt E, Monty J, Rueda D, Ruzicka R, Thanner S (2011) Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. PloS ONE 6:1–10

    Article  Google Scholar 

  • Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM (2012) Ocean acidification refugia of the Florida Reef Tract. PloS ONE 7:1–10

    Article  Google Scholar 

  • Marsh JA Jr (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2:623–627

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowsky PG, Porter JW, Dubinsky Z, Falkowski PG (1984) Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond, B 222:181–202

    Article  CAS  Google Scholar 

  • Raz-bahat M, Faibish H, Mass T, Rinkevich B (2009) Three-dimensional laser scanning as an efficient tool for coral surface area measurements. Limnol Oceanogr-Meth 7:657–663

    Article  Google Scholar 

  • Renegar DA, Riegl BBM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76

    Article  Google Scholar 

  • Rogers CS (1979) The effect of shading on coral reef structure and function. J Exp Mar Biol Ecol 41:269–288

    Article  Google Scholar 

  • Schopmeyer SA, Lirman D, Bartels E, Byrne J, Gilliam DS, Hunt J, Johnson ME, Larson EA, Maxwell K, Nedimeyer K, Walter C (2012) In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor Ecol 20:696–703

    Article  Google Scholar 

  • Schuhmacher H, Plewka M (1981) The adaptive significance of mechanical properties versus morphological adjustments in skeletons of Acropora plamata and Acropora cervicornis (Cnidaria, Scleractinia). Proc 4th Int Coral Reef Symp 2:121–128

    Google Scholar 

  • Schutter S, van Velthoven B, Janse M, Osinga R, Janssen M, Wijffels R, Verreth J (2008) The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. J Exp Mar Biol Ecol 367:75–80

    Article  Google Scholar 

  • Shinn EA (1966) Coral growth-rate, an environmental indicator. J Paleontol 40:233–240

    Google Scholar 

  • Stambler N, Popper N, Dubinsky Z, Stimson J (1991) Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac Sci 45:299–307

    Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis(Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ (2012) Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32:327–337

    Article  Google Scholar 

  • Takahashi A, Kurihara H (2013) Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs 32:305–314

    Article  Google Scholar 

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals. I. Growth rate of the reef-building coral Montastrea annularis. Mar Biol 87:143–155

    Article  Google Scholar 

  • Torres JL, Armstrong RA, Corredor JE, Gilbes F (2007) Physiological responses of Acropora cervicornis to increased solar irradiance. Photochem Photobiol 83:839–850

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P, Grover R, Maguer JF, Hoogenbroom M, Ferrier-Pagès (2013) Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs. doi:10.1007/s00338-013-1100-7

    Google Scholar 

  • Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Levi C, Boury-Esnault N (eds) Biologie des spongiares. Coll Int, Centre National de la Recherche Scientifique, 291:309–315

  • Tunnicliffe V (1981) Breakage and propagation of the stony coral Acropora cervicornis. Proc Natl Acad Sci USA 78:2427–2431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas-Angel B, Thomas JD, Hoke SM (2003) High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–473

    Article  Google Scholar 

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  CAS  PubMed  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PloS ONE 7:1–8

    Article  Google Scholar 

  • Young CN, Schopmeyer SA, Lirman D (2012) A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull Mar Sci 88:1075–1098

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the National Oceanic and Atmospheric Administration’s Coral Reef Conservation Program and Ocean Acidification Program. We acknowledge the assistance of T. Burton, D. Graham, and L. Olinger with the maintenance of experimental aquaria and analysis of coral growth. C. Drury helped collect and transport coral samples from the field. G. Kolodziej assisted in the validation of the 3D scanner methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Enochs.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

338_2014_1132_MOESM1_ESM.ai

Supplementary material ESM 1 Linear regression of 3D-scanned versus (a) calculated volume and (b) surface area of smooth cylinders. Calculated values determined from cylinder height and width measured with vernier calipers. Intercept of regression set to zero. (AI 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enochs, I.C., Manzello, D.P., Carlton, R. et al. Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornis . Coral Reefs 33, 477–485 (2014). https://doi.org/10.1007/s00338-014-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1132-7

Keywords

Navigation