Skip to main content

Advertisement

Log in

Impacts of temperature increase and acidification on thickness of the surface mucopolysaccharide layer of the Caribbean coral Diploria spp.

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral mechanisms of resilience and resistance to stressors such as increasing sea surface temperature and ocean acidification must first be understood in order to facilitate the survival of coral reefs as we know them. One such mechanism is production of the protective surface mucopolysaccharide layer (SML). In this study, we investigated changes in the thickness of the SML in response to increasing temperature and acidification for the three Caribbean scleractinian coral species of the genus Diploria, which have been shown to exhibit differential resilience to disease and bleaching. Among the three species, Diploria strigosa is known to have a higher susceptibility to disease, Diploria labyrinthiformis is known to bleach more quickly, and Diploria clivosa is relatively unstudied. When temperature was increased from 25 to 31 °C over a 1- or 6-week period, the overall thickness of the SML decreased from 33 to 55 % for all three species. Average SML thickness at 25 °C for all three species ranged from 106 to 156 μm, while average thickness at 31 °C ranged from 64 to 86 μm. SML thickness was significantly different among species at 25 °C, but not at 31 °C. D. labyrinthiformis demonstrated lower fragment mortality due to thermal stress when compared to the other Diploria species. Acidification from pH 8.2 to 7.7 over 5 weeks had no effect on SML thickness for any species. The observed decrease in SML thickness in response to increased temperature might be attributed to a decrease in the production of mucus or an increase in the viscosity of the SML. These findings may help to explain the increased prevalence of coral disease during the warmer months, since increased temperature compromises an important aspect of coral innate immunity, as well as differences in disease and bleaching susceptibilities between Diploria species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA 110:1387–1392

    Google Scholar 

  • Bourne D (2005) Microbiological assessment of a disease outbreak on corals from Magnetic Island (Great Barrier Reef, Australia). Coral Reefs 24:304–312

    Article  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Brown B, Downs C, Dunne R, Gibb S (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology 5:1220–1227

    Google Scholar 

  • Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93

    Article  Google Scholar 

  • Calnan JM, Smith TB, Nemeth RS, Kadison E, Blondeau J (2008) Coral disease prevalence and host susceptibility on mid-depth and deep reefs in the United States Virgin Islands. Rev Biol Trop 56:223–234

    Google Scholar 

  • Cook CB, Logan A, Ward J, Luckhurst B, Berg CJ (1990) Elevated temperatures and bleaching on a high-latitude coral reef: The 1988 Bermuda event. Coral Reefs 9:45–49

    Google Scholar 

  • Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Google Scholar 

  • Edmunds PJ (1991) Extent and effect of black band disease on a Caribbean reef. Coral Reefs 10:161–165

    Article  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  PubMed  Google Scholar 

  • Fournie JW, Vivian DN, Yee SH, Courtney LA, Barron MG (2012) Comparative sensitivity of six scleractinian corals to temperature and solar radiation. Dis Aquat Org 99:85–93

    Article  PubMed  Google Scholar 

  • Goulet T, Coffroth M (2004) The genetic identity of dinoflagellate symbionts in Caribbean octocorals. Coral Reefs 23:465–472

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Guppy R, Bythell JC (2006) Environmental effects on bacterial diversity in the surface mucus layer of the reef coral Montastraea faveolata. Mar Ecol Prog Ser 328:133–142

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Jatkar A, Brown B, Bythell J, Guppy R, Morris N, Pearson J (2010a) Measuring mucus thickness in reef corals using a technique devised for vertebrate applications. Mar Biol 157:261–267

    Article  Google Scholar 

  • Jatkar AA, Brown BE, Bythell JC, Guppy R, Morris NJ, Pearson JP (2010b) Coral mucus: the properties of its constituent mucins. Biomacromolecules 11:883–888

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Johnson R, Noyes T, Parsons R (2012) Spatial and temporal patterns of coral black band disease in relation to a major sewage outfall. Mar Ecol Prog Ser 462:79

    Article  Google Scholar 

  • Jordan N, Newton J, Pearson J, Allen A (1998) A novel method for the visualization of the in situ mucus layer in rat and man. Clin Sci 95:97–106

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarsky LT, Draud M, Williams EH (2005) Is there a relationship between proximity to sewage effluent and the prevalence of coral disease? Caribb J Sci 41:124–137

    Google Scholar 

  • Kellogg C (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  CAS  Google Scholar 

  • Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618

    Article  CAS  PubMed  Google Scholar 

  • Leclercq N, Gattuso J, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Global Change Biol 6:329–334

    Article  Google Scholar 

  • Lieleg O, Ribbeck K (2011) Biological hydrogels as selective diffusion barriers. Trends Cell Biol 21:543–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Littman RA, Willis BL, Pfeffer C, Bourne DG (2009) Diversities of coral-associated bacteria differ with location, but not species, for three Acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol 68:152–163

    Google Scholar 

  • McCormick D, Horton L, Mee A (1990) Mucin depletion in inflammatory bowel-disease. J Clin Pathol 43:143–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meikle P, Richards G, Yellowlees D (1988) Structural investigations on the mucus from 6 species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  • Meron D, Atias E, Kruh LI, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60

    Google Scholar 

  • Miller J, Waara R, Muller E, Rogers C (2006) Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs 25:418-418

    Google Scholar 

  • Muller EM, Rogers CS, Spitzack AS, van Woesik R (2008) Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27:191–195

    Article  Google Scholar 

  • Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD (2009) Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Dis Aquat Org 87:67–78

    Article  CAS  PubMed  Google Scholar 

  • Nakajima R, Yoshida T, Azman B, Zaleha K, Othman B, Toda T (2009) In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat Ecol 43:815–823

    Article  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Google Scholar 

  • Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastroin Liver Physiol 300:G327–G333

    Article  CAS  Google Scholar 

  • Piggot AM, Fouke BW, Sivaguru M, Sanford RA, Gaskins HR (2009) Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis. Mar Biol 156:2379–2389

    Article  CAS  Google Scholar 

  • Pullan R, Thomas G, Rhodes M, Newcombe R, Williams G, Allen A, Rhodes J (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35:353–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76

    Article  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Ritchie K (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–326

    Article  PubMed  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Loya Y (eds) (2004) Coral health and disease. Springer

  • Rützler K, Santavy DL (1983) The black band disease of Atlantic reef corals. Mar Ecol 4:301–319

    Article  Google Scholar 

  • Schade C, Flemstrong G, Holm L (1994) Hydrogen-ion concentration in the mucus layer on top of acid-stimulated and acid-inhibited rat gastric-mucosa. Gastroenterology 107:180–188

    CAS  PubMed  Google Scholar 

  • Sekar R, Kaczmarsky LT, Richardson LL (2008) Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser 362:85–98

    Article  CAS  Google Scholar 

  • Sharp KH, Ritchie KB (2012) Multi-partner interactions in corals in the face of climate change. Biol Bull 223:66–77

    PubMed  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense coral mucus-associated bacteria. FEMS Microbiol Ecol 67:371–380

    Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:273–302

    Article  Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2011) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52

    Article  Google Scholar 

  • Tremblay P, Weinbauer MG, Rottier C, Guerardel Y, Nozais C, Ferrier-Pages C (2011) Mucus composition and bacterial communities associated with the tissue and skeleton of three scleractinian corals maintained under culture conditions. J Mar Biol Assoc U K 91:649–657

    Article  CAS  Google Scholar 

  • Vega Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  PubMed  Google Scholar 

  • Villamizar E, Camisotti H, Rodriguez B, Perez J, Romero M (2008) Impacts of the 2005 Caribbean bleaching event at Archipielago de Los Roques National Park. Venezuela. Rev Biol Trop Suppl 1:255–270

  • Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb S, Rasheed M, Jorgensen B (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ‘bleaching’ conditions. Mar Ecol Prog Ser 396:145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lauri MacLaughlin for assistance with coral collections. Coral were collected under permit # FKNMS-2009-045-A3. This work was supported by the College of Arts and Sciences, Florida International University. Z.P. was supported by the MBRS-RISE Program, Florida International University. This is contribution #269 from the Tropical Biology Program of Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe A. Pratte.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratte, Z.A., Richardson, L.L. Impacts of temperature increase and acidification on thickness of the surface mucopolysaccharide layer of the Caribbean coral Diploria spp.. Coral Reefs 33, 487–496 (2014). https://doi.org/10.1007/s00338-013-1115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1115-0

Keywords

Navigation