Skip to main content

Advertisement

Log in

Skeletal mineralogy of newly settling Acropora millepora (Scleractinia) coral recruits

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Knowledge of skeletogenesis in scleractinian corals is central to reconstructing past ocean and climate histories, assessing and counteracting future climate and ocean acidification impacts upon coral reefs, and determining the taxonomy and evolutionary path of the Scleractinia. To better understand skeletogenesis and mineralogy in extant scleractinian corals, we have investigated the nature of the initial calcium carbonate skeleton deposited by newly settling coral recruits. Settling Acropora millepora larvae were sampled daily for 10 days from initial attachment, and the carbonate mineralogy of their newly deposited skeletons was investigated. Bulk analyses using Raman and infrared spectroscopic methods revealed that the skeletons were predominantly comprised of aragonite, with no evidence of calcite or an amorphous precursor phase, although presence of the latter cannot be discounted. Sensitive selected area electron diffraction analyses of sub-micron areas of skeletal regions further consolidated these data. These findings help to address the uncertainty surrounding reported differences in carbonate mineralogy between larval and adult extant coral skeletons by indicating that skeletons of new coral recruits share the same aragonitic mineralogy as those of their mature counterparts. In this respect, we can expect that skeletogenesis in both larval and mature growth stages of scleractinian corals will be similarly affected by ocean acidification and predicted environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials 15:959–970

    Article  CAS  Google Scholar 

  • Barnes DJ (1970) Coral skeletons: An explanation of their growth and structure. Science 170:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc Roy Soc Lond B Biol Sci 264:461–465

    Article  CAS  Google Scholar 

  • Burgman R, Seager R, Clement A, Herweijer C (2010) Role of tropical Pacific SSTs in global medieval hydroclimate: A modeling study. Geophys Res Lett 37:L06705

    Article  Google Scholar 

  • Clode PL, Marshall AT (2003) Skeletal microstructure of Galaxea fascicularis exsert septa: A high resolution SEM study. Biol Bull 204:146–154

    Article  PubMed  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22:118–127

    Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151–187

    Article  CAS  Google Scholar 

  • Cohen AL, McCorkle DC, de Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochem Geophys Geosys 10:1–12

    Article  Google Scholar 

  • Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157

    Article  Google Scholar 

  • Constantz BR (2005) Biomineralization: Physiochemical and biological processes in nanotechnology. In: Greco RS, Prinz FB, Smith RL (eds) Nanoscale technology in biological systems. CRC Press, FL, pp 217–226

    Google Scholar 

  • Constantz BR, Meike A (1990) Calcite centers of calcification in Mussa angulosa (Scleractinia). In: Crick RE (ed) Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 201–207

    Google Scholar 

  • Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some Recent scleractinian corals. Paläontologische Zeitschrift 72:257–270

    Google Scholar 

  • Cuif J-P, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: Discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88:582–592

    Article  CAS  Google Scholar 

  • Cusack M, Freer A (2008) Biomineralization: Elemental and organic influence in carbonate systems. Chem Rev 108:4433–4454

    Article  CAS  PubMed  Google Scholar 

  • Dandeu A, Humbert B, Carteret C, Muhr H, Plasari E, Bossoutrot JM (2006) Raman spectroscopy—A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorph mixtures. Chem Eng Tech 29:221–225

    Article  CAS  Google Scholar 

  • de Villiers JPR (1971) Crystal structures of aragonite, strontianite, and witherite. Am Mineral 56:758–767

    Google Scholar 

  • Dey A, de With G, Sommerdijk NAJM (2010) In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem Soc Rev 39:397–409

    Article  CAS  PubMed  Google Scholar 

  • Gladfelter EH (1983) Skeletal development in Acropora cervicornis II: Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Graf DL (1961) Crystallographic tables for the rhombohedral carbonates. Am Mineral 46:1283–1316

    CAS  Google Scholar 

  • Hacker BR, Kirby SH, Bohlen SR (1992) Time and metamorphic petrology—calcite to aragonite experiments. Science 258:110–112

    Article  CAS  PubMed  Google Scholar 

  • Hallock P (2005) Global change and modern coral reefs: new opportunities to understand shallow-water carbonate depositional processes. Sediment Geol 175:19–33

    Article  CAS  Google Scholar 

  • Houck JE, Buddemeier RW, Chave KE (1975) Skeletal low-magnesium calcite in living scleractinian corals. Science 189:997–999

    Article  CAS  PubMed  Google Scholar 

  • Jell JS (1974) The microstructure of some scleractinian corals. Proc 2nd Int Coral Reef Symp:301–320

  • Jell JS (1980) Skeletogenesis of newly settled planulae of the hermatypic coral Porites lutea. Acta Palaeon Pol 25:311–320

    Google Scholar 

  • Johnston IS (1976) The tissue-skeleton interface in the newly-settled polyps of the reef-coral Pocillopora damicornis. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Colombia, SC, pp 249–260

    Google Scholar 

  • Le Tissier MD’AA (1988) Patterns of formation and the ultrastructure of the larval skeleton of Pocillopora damicornis. Mar Biol 98:493–501

    Article  Google Scholar 

  • Macintyre IG, Towe KM (1976) Skeletal calcite in living scleractinian corals: Microboring fillings, not primary skeletal deposits. Science 193:701–702

    Article  CAS  PubMed  Google Scholar 

  • Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: A cross family comparison. Proc Roy Soc Lond B Biol Sci 270:179–184

    Article  Google Scholar 

  • McGregor HV, Gagan MK (2003) Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction. Geochim Cosmochim Acta 67:2147–2156

    Article  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: Skeleton loss in Scleractinia. Proc Nat Acad Sci USA 103:9096–9100

    Article  CAS  PubMed  Google Scholar 

  • Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H (2005) Amorphous layer around aragonite platelets in nacre. Proc Nat Acad Sci USA 102:12653–12655

    Article  CAS  PubMed  Google Scholar 

  • Nothdurft LD, Webb GE (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea, and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (2009) Earliest diagenesis in scleractinian coral skeletons: Implications for palaeoclimate-sensitive geochemical archives. Facies 55:161–201

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Bostrom T, Rintoul L (2007) Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): Implications for trace element archives. Geochim Cosmochim Acta 71:5423–5438

    Article  CAS  Google Scholar 

  • Ogilvie MM (1896) Microscopic and systematic study of madreporarian types of corals. Phil Trans 187:85–345

    Google Scholar 

  • Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: Implications for taxonomy and control on early diagenesis. Coral Reefs 22:109–120

    Article  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    Article  CAS  PubMed  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert P (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Nat Acad Sci USA 105:17362–17366

    Article  CAS  PubMed  Google Scholar 

  • Raz S, Testeniere O, Hecker A, Weiner S, Luquet G (2002) Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203:269–274

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 9:178

    Article  PubMed  Google Scholar 

  • Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nature Geoscience 2:492–495

    Article  CAS  Google Scholar 

  • Sorauf JE (1972) Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology 15:88–107

    Google Scholar 

  • Sorauf JE (1981) Biomineralization, structure and diagenesis of the coelenterate skeleton. Acta Palaeont Polon 25:327–343

    Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Palaeont Polon 48:497–530

    Google Scholar 

  • Stolarski J, Meibom A, Przenioslo R, Mazur M (2007) A Cretaceous scleractinian coral with a calcitic skeleton. Science 318:92–94

    Article  CAS  PubMed  Google Scholar 

  • Suwa R, Nakamura M, Morita M, Shimada K, Iguchi A, Sakai K, Suzuki A (2010) Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fish Sci 76:93–99

    Article  CAS  Google Scholar 

  • Vandermeulen JH, Watabe N (1973) Studies on reef corals. I. Skeleton formation by newly settled planula larva of Pocillopora damicornis. Mar Biol 23:47–57

    Article  Google Scholar 

  • Wainwright SA (1963) Skeletal organization in the coral, Pocillopora damicornis. Quart J Microsc Sci 104:169–183

    Google Scholar 

  • Webb GW, Nothdurft LD, Kamber BS, Kloprogge JT, Zhao J-X (2009) Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology 56:1433–1463

    Article  CAS  Google Scholar 

  • Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346

    Article  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  CAS  PubMed  Google Scholar 

  • Wise SW (1970) Scleractinian coral skeletons: surface microarchitecture and attachment scar patterns. Science 169:978–980

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the assistance of Prof. Bette Willis, Dr. David Bourne and Karen Chon Seng with coral collection and settling, and Ms. Julia Mahamid with Raman spectroscopy. We also acknowledge the facilities of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The UWA, a facility funded by The University, State and Commonwealth Governments. PLC received funding through the Fay Gale Fellowship to undertake part of this research at the WIS. SW is the incumbent of the Dr. Walter and Dr. Trude Burchardt Professorial Chair of Structural Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Clode.

Additional information

Communicated by Geology Editor Prof. Bernhard Riegl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clode, P.L., Lema, K., Saunders, M. et al. Skeletal mineralogy of newly settling Acropora millepora (Scleractinia) coral recruits. Coral Reefs 30, 1–8 (2011). https://doi.org/10.1007/s00338-010-0673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-010-0673-7

Keywords

Navigation