Skip to main content

Advertisement

Log in

Screening for gene–environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Identifying gene–environment interactions is a central challenge in the quest to understand susceptibility to complex, multi-factorial diseases. Developing an understanding of how inter-individual variability in inherited genetic variation alters the effects of environmental exposures will enhance our knowledge of disease mechanisms and improve our ability to predict disease and target interventions to high-risk sub-populations. Limited progress has been made identifying gene–environment interactions in the epidemiological setting using existing statistical approaches for genome-wide searches for interaction. In this paper, we describe a novel two-step approach using omics data to conduct genome-wide searches for gene–environment interactions. Using existing genome-wide SNP data from a large Bangladeshi cohort study specifically designed to assess the effect of arsenic exposure on health, we evaluated gene-arsenic interactions by first conducting genome-wide searches for SNPs that modify the effect of arsenic on molecular phenotypes (gene expression and DNA methylation features). Using this set of SNPs showing evidence of interaction with arsenic in relation to molecular phenotypes, we then tested SNP–arsenic interactions in relation to skin lesions, a hallmark characteristic of arsenic toxicity. With the emergence of additional omics data in the epidemiologic setting, our approach may have the potential to boost power for genome-wide interaction research, enabling the identification of interactions that will enhance our understanding of disease etiology and our ability to develop interventions targeted at susceptible sub-populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhyankar LN, Jones MR, Guallar E, Navas-Acien A (2012) Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120(4):494–500

    Article  CAS  PubMed  Google Scholar 

  • Ahsan H, Chen Y, Parvez F, Argos M, Hussain AI, Momotaj H et al (2006a) Health effects of arsenic longitudinal study (HEALS): description of a multidisciplinary epidemiologic investigation. J Expo Sci Environ Epidemiol 16(2):191–205

    Article  CAS  PubMed  Google Scholar 

  • Ahsan H, Chen Y, Parvez F, Zablotska L, Argos M, Hussain I et al (2006b) Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163(12):1138–1148

    Article  PubMed  Google Scholar 

  • Antonelli R, Shao K, Thomas DJ, Sams R 2nd, Cowden J (2014) AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ Res 132:156–167

    Article  CAS  PubMed  Google Scholar 

  • Argos M, Parvez F, Chen Y, Hussain AZ, Momotaj H, Howe GR et al (2007) Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am J Public Health 97(5):825–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F et al (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376(9737):252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argos M, Rahman M, Parvez F, Dignam J, Islam T, Quasem I et al (2013) Baseline comorbidities in a skin cancer prevention trial in Bangladesh. Eur J Clin Invest 43(6):579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S et al (2015) Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123(1):64–71

    CAS  PubMed  Google Scholar 

  • Austin MA, Hair MS, Fullerton SM (2012) Research guidelines in the era of large-scale collaborations: an analysis of Genome-wide Association Study Consortia. Am J Epidemiol 175(9):962–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrd DM, Roegner ML, Griffiths JC, Lamm SH, Grumski KS, Wilson R et al (1996) Carcinogenic risks of inorganic arsenic in perspective. Int Arch Occup Environ Health 68(6):484–494

    Article  CAS  PubMed  Google Scholar 

  • Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103(16):1252–1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Graziano JH, Parvez F, Hussain I, Momotaj H, van Geen A et al (2006) Modification of risk of arsenic-induced skin lesions by sunlight exposure, smoking, and occupational exposures in Bangladesh. Epidemiology 17(4):459–467

    Article  PubMed  Google Scholar 

  • Concha G, Vogler G, Nermell B, Vahter M (2002) Intra-individual variation in the metabolism of inorganic arsenic. Int Arch Occup Environ Health 75(8):576–580

    Article  CAS  PubMed  Google Scholar 

  • Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F (2011) Evaluation of the Infinium Methylation 450K technology. Epigenomics 3(6):771–784

    Article  CAS  PubMed  Google Scholar 

  • European Food Safety Authority (2009) EFSA panel on contaminants in the food chain (CONTAM): scientific opinion on arsenic in food. EFSA J 7:1351

    Article  Google Scholar 

  • Gauderman WJ, Mukherjee B, Aschard H, Hsu L, Lewinger JP, Patel CJ et al (2017) Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. Am J Epidemiol 186(7):762–770

    Article  PubMed  Google Scholar 

  • Ghosh P, Banerjee M, Giri AK, Ray K (2008) Toxicogenomics of arsenic: classical ideas and recent advances. Mutat Res 659(3):293–301

    Article  CAS  PubMed  Google Scholar 

  • Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ et al (2011) Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci USA 108(51):20656–20660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha Mazumder DN (2007) Arsenic and non-malignant lung disease. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(12):1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Heinegard D, Tiderstrom G (1973) Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta 43(3):305–310

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Marcos R (2008) Genetic variations associated with interindividual sensitivity in the response to arsenic exposure. Pharmacogenomics 9(8):1113–1132

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2006) Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 114(11):1790–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter CM, Slattery ML, Duggan DJ, Muehling J, Curtin K, Hsu L et al (2010) Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer 10:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D et al (2012) Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res 72(8):2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter CM, Mechanic LE, Chatterjee N, Kraft P, Gillanders EM, Tank NCIG-ET. (2013) Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report. Genet Epidemiol 37(7):643–657

    Article  PubMed  PubMed Central  Google Scholar 

  • IARC (2004) http://www.inchem.org/documents/iarc/vol84/84-01-arsenic.html

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100(Pt C):11–465

    PubMed Central  Google Scholar 

  • Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL (2012) Arsenic, organic foods, and brown rice syrup. Environ Health Perspect 120(5):623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34(8):816–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J et al (2012) Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environ Health Perspect. https://doi.org/10.1289/ehp.1104579

    PubMed  PubMed Central  Google Scholar 

  • McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N et al (2017) Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol 186(7):753–761

    PubMed  Google Scholar 

  • Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J et al (2010) Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res 12(6):R110

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon K, Guallar E, Navas-Acien A (2012) Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 14(6):542–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA et al (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162(11):1037–1049

    Article  PubMed  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect 114(5):641–648

    Article  CAS  PubMed  Google Scholar 

  • Nickels S, Truong T, Hein R, Stevens K, Buck K, Behrens S et al (2013) Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet 9(3):e1003284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon DE, Mussmann GV, Eckdahl SJ, Moyer TP (1991) Total arsenic in urine: palladium-persulfate vs nickel as a matrix modifier for graphite furnace atomic absorption spectrophotometry. Clin Chem 37(9):1575–1579

    CAS  PubMed  Google Scholar 

  • Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S et al (2012) Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 8(2):e1002522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce BL, Tong L, Argos M, Gao J, Farzana J, Roy S et al (2013) Arsenic metabolism efficiency has a causal role in arsenic toxicity: mendelian randomization and gene-environment interaction. Int J Epidemiol 42(6):1862–1871

    Article  PubMed  Google Scholar 

  • Pierce BL, Tong L, Chen LS, Rahaman R, Argos M, Jasmine F et al (2014) Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1800 South Asians. PLoS Genet 10(12):e1004818

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce B, Tong L, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G et al (2016) Co-occurring eQTLs and mQTLs: detecting shared causal variants and shared biological mechanisms. bioRxiv. https://doi.org/10.1101/094656

    Google Scholar 

  • Potera C (2007) U.S. rice serves up arsenic. Environ Health Perspect 115(6):A296

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritz BR, Chatterjee N, Garcia-Closas M, Gauderman WJ, Pierce BL, Kraft P et al (2017) Lessons learned from past gene-environment interaction successes. Am J Epidemiol 186(7):778–786

    Article  PubMed  Google Scholar 

  • Rodriguez-Barranco M, Lacasana M, Aguilar-Garduno C, Alguacil J, Gil F, Gonzalez-Alzaga B et al (2013) Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ 454–455:562–577

    Article  PubMed  Google Scholar 

  • Tabrez S, Priyadarshini M, Priyamvada S, Khan MS, Na A, Zaidi SK (2014) Gene-environment interactions in heavy metal and pesticide carcinogenesis. Mutat Res Genet Toxicol Environ Mutagen 760:1–9

    Article  CAS  PubMed  Google Scholar 

  • Thayer KA, Heindel JJ, Bucher JR, Gallo MA (2012) Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 120(6):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis RC, Reeves GK, Green J, Bull D, Tipper SJ, Baker K et al (2010) Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet 375(9732):2143–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng CH (2009) A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol 235(3):338–350

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P (2010) Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES Data. Environ Health Perspect 118(3):345–350

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198(3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Zablotska LB, Chen Y, Graziano JH, Parvez F, van Geen A, Howe GR et al (2008) Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh. Environ Health Perspect 116(8):1056–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44(7):821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Institutes of Health grants R21 ES024834 to B.L.P and M.A.; P42 ES 10349 to J.H.G., and R01 CA 107431 to H.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Argos or Brandon L. Pierce.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argos, M., Tong, L., Roy, S. et al. Screening for gene–environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 29, 101–111 (2018). https://doi.org/10.1007/s00335-018-9737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9737-8

Keywords

Navigation