Skip to main content

Advertisement

Log in

MiRNAs, epigenetics, and cancer

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the “host” gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Esteller M (2005a) The epigenetic breakdown of cancer cells: from DNA methylation to histone modifications. Prog Mol Subcell Biol 38:169–181

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Esteller M (2005b) Methyl-CpG-binding proteins in cancer: blaming the DNA methylation messenger. Biochem Cell Biol 83:374–384

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezikov E, Plasterk RH (2005) Camels and zebrafish, viruses and cancer: a microRNA update. Hum Mol Genet 14 Spec No. 2:R183–R190

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (2005) Transposons reanimated in mice. Cell 122:322–325

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E et al (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T et al (2007) The human let-7a–3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N et al (2004a) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E et al (2004b) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callis TE, Chen JF, Wang DZ (2007) MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol 26:219–225

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douc-Rasy S, Barrois M, Fogel S, Ahomadegbe JC, Stehelin D et al (1996) High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene 12:423–430

    CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16 Spec No 1:R50–R59

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  CAS  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12:457–466

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  • Gibbons RJ (2005) Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14 Spec No 1:R85–R92

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  CAS  PubMed  Google Scholar 

  • Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  CAS  PubMed  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 96:4868–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6:1284–1288

    CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    CAS  PubMed  Google Scholar 

  • Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721

    Article  CAS  PubMed  Google Scholar 

  • Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M et al (2001) Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 276:39508–39511

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–R44

    PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kwon YM, Kim JS, Han J, Shim YM et al (2006) Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  • Kuendgen A, Lubbert M (2008) Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol 87:601–611

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J Pathol 214:17–24

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Oh SP, Okano M, Juttermann R, Goss KA et al (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Miller JD, Ying SY (2006) Intronic microRNA (miRNA). J Biomed Biotechnol 2006:26818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CG, Spizzo R, Calin GA, Croce CM (2008) Expression profiling of microRNA using oligo DNA arrays. Methods 44:22–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6:233–244

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a–3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Henson R, Lang M, Wehbe H, Maheshwari S et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y et al (2007) The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282:8256–8264

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27:378–386

    Article  CAS  PubMed  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E et al (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  CAS  PubMed  Google Scholar 

  • Michael MZ, O’Connor SM, t Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    CAS  PubMed  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J et al (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A et al (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593

    Article  CAS  PubMed  Google Scholar 

  • Royo H, Cavaille J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ et al (2006) Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res 34:4801–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M et al (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 34:261–262

    Article  CAS  PubMed  Google Scholar 

  • Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC et al (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  CAS  PubMed  Google Scholar 

  • Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279:27816–27823

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y et al (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    CAS  PubMed  Google Scholar 

  • Taylor EL, Gant TW (2008) Emerging fundamental roles for non-coding RNA species in toxicology. Toxicology 246:34–39

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  CAS  PubMed  Google Scholar 

  • Vogiatzi P, Aimola P, Scarano MI, Claudio PP (2007) Epigenome-derived drugs: recent advances and future perspectives. Drug News Perspect 20:627–633

    Article  CAS  PubMed  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  CAS  PubMed  Google Scholar 

  • Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen Y, Liang J, Shi B, Wu G et al (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438:981–987

    Article  CAS  PubMed  Google Scholar 

  • Yahi H, Philipot O, Guasconi V, Fritsch L, Ait-Si-Ali S (2006) Chromatin modification and muscle differentiation. Expert Opin Ther Targets 10:923–934

    Article  CAS  PubMed  Google Scholar 

  • Yokochi T, Robertson KD (2002) Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem 277:11735–11745

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their ongoing support from the Terry Fox Foundation of Canada, the Canadian Institutes of Health for Research and the Cancer Research Society of Canada. Florian Kuchenbauer received support from the Deutsche Forschungsgemeinschaft Germany (grant No. Ku 2288/1-1). Furthermore, the authors thank Dr. Bob Argiropoulos for inspiring discussions and thoughtful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kuchenbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouhi, A., Mager, D.L., Humphries, R.K. et al. MiRNAs, epigenetics, and cancer. Mamm Genome 19, 517–525 (2008). https://doi.org/10.1007/s00335-008-9133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9133-x

Keywords

Navigation