Skip to main content
Log in

QTL analyses of lineage-negative mouse bone marrow cells labeled with Sca-1 and c-Kit

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Differences in the number of functionally and/or phenotypically defined bone marrow cells in inbred mouse strains have been exploited to map quantitative trait loci (QTL) that determine the variation in cell frequency. To extend this approach to the differences in the stem/progenitor cell compartment in CBA/H and C57BL/6 mice, we have exploited the resolution of flow cytometry and the power of QTL analyses in 124 F2 mice to analyze lineage-negative (Lin) bone marrow cells according to the intensity of labeling with Sca-1 and c-Kit. In the Lin Sca-1+ c-Kit+ enriched population, six QTL were identified: one significant and five suggestive. Whereas previous in vitro clonogenic, LTC-IC, day 35 CAFC, and flow cytometry each identified different QTL, our approach identified the same or very similar QTL at all three loci (chromosomes 1, 17, and 18) as well as QTL on chromosomes 6 and 10. In silico analyses implicate hematopoietic stem cell homing involving Cxcr4 and Cxcl12 as being the determining pathway. The mapping of the same or very similar QTL in independent studies using different assay(s) suggests a common genetic determinant, and thus reinforces the biological and genetic significance of the QTL. These data also suggest that mouse bone marrow cell subpopulations can be functionally, phenotypically, and genetically defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boulton E, Cole C, Knight A, Cleary H, Snowden R et al (2003) Low penetrance genetic susceptibility and resistance loci implicated in the relative risk of radiation-induced acute myeloid leukaemia in mice. Blood 101:2349–2354

    Article  PubMed  CAS  Google Scholar 

  • Breems DA, Blokland EA, Neben S, Ploemacher RE (1994) Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8:1095–1104

    PubMed  CAS  Google Scholar 

  • Burger JA, Burkle A (2007) The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol 137:288–296

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232

    Article  PubMed  CAS  Google Scholar 

  • Cervino AC, Gosink M, Fallahi M, Pascal B, Mader C et al (2006) A comprehensive mouse IBD database for the efficient localization of quantitative trait loci. Mamm Genome 17:565–574

    Article  PubMed  CAS  Google Scholar 

  • Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R et al (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Harrison DE (2002) Quantitative trait loci regulating relative lymphocyte proportions in mouse peripheral blood. Blood 99:561–566

    Article  PubMed  CAS  Google Scholar 

  • Christensen JL, Weissman IL (2001) Flk-2 is a marker in haemopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proc Nat Acad Sci U S A 98:14541–14546

    Article  CAS  Google Scholar 

  • De Haan G, Van Zant G (1997) Intrinsic and extrinsic control of hemopoietic stem cell numbers: Mapping of a stem cell gene. J Exp Med 186:529–536

    Article  PubMed  Google Scholar 

  • De Haan G, Szilvassy SJ, Meyerose TE, Dontje B, Grimes B et al (2000) Distinct functional properties of highly purified hematopoietic stem cells from mouse strains differing in stem cell numbers. Blood 96:1374–1379

    PubMed  Google Scholar 

  • De Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H et al (2002) A genetic and genomic analysis identifies a cluster of genes associated with haemopoietic cell turnover. Blood 100:2056–2062

    Article  PubMed  Google Scholar 

  • Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA et al (2005) The Mouse Genome Database (MGD): from genes to mice–a community resource for mouse biology. Nucleic Acids Res 33:D471–D475

    Article  PubMed  CAS  Google Scholar 

  • Festing MF (1996) Origins and characteristics of inbred strains of mice. In: Lyon MF, Rastan S, Brown SDM (eds) Genetic variants and strains of the laboratory mouse, Vol 2. Oxford University Press, Oxford, UK, pp 1537–1576

    Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  PubMed  CAS  Google Scholar 

  • Geiger H, True JM, de Haan G, Van Zant G (2001) Age- and stage-specific regulation patterns in the haematopoietic stem cell hierarchy. Blood 98:2966–2972

    Article  PubMed  CAS  Google Scholar 

  • Henckaerts E, Geiger H, Langer JC, Rebollo P, Van Zant G et al (2002) Genetically determined variation in the number of phenotypically defined haemopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood 99:3947–3954

    Article  PubMed  CAS  Google Scholar 

  • Henckaerts E, Langer JC, Snoeck H-W (2004) Quantitative genetic variation in the hematopoietic stem and progenitor cell compartment and in life span are closely linked at multiple loci in BXD recombinant inbred mice. Blood 104:374–379

    Article  PubMed  CAS  Google Scholar 

  • Jawad M, Cole C, Zanker A, Lo P, Fitch S et al (2006) Evidence for clustered tumour suppressor gene loci on mouse chromosomes 2 and 4 in radiation-induced acute myeloid leukaemia. Int J Radiat Biol 82:383–391

    Article  PubMed  CAS  Google Scholar 

  • Jawad M, Giotopoulos G, Fitch S, Cole C, Plumb M et al (2007a) Mouse bone marrow and peripheral blood red blood cell counts are regulated by different autosomal genetic loci. Blood Cells Mol Dis 38:69–77

    Article  PubMed  CAS  Google Scholar 

  • Jawad M, Giotopoulos G, Cole C, Plumb M (2007b) Target cell frequency is a genetically determined risk factor in radiation leukaemogenesis. Br J Radiol 80:56–62

    Article  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Jansen M, Aronow B, Geiger H, Van Zant G (2007) The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nat Genet 39:178–188

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Mock BA, Krall MM, Dosik JK (1993) Genetic mapping of tumor susceptibility genes involved in mouse plasmacytomagensis. Proc Natl Acad Sci U S A 90:9499–9503

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A 92:10302–10306

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–1939

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Qian D, Jerabek L, Thiel BA, Park I-K et al (2002) A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol 168:635–642

    PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Riblet R (1996) Genetic control of the frequency of haemopoietic stem cells in mice: mapping a candidate locus to chromosome 1. J Exp Med 183:1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y et al (1992) In vivo and in vitro stem cell function of c-Kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050

    PubMed  CAS  Google Scholar 

  • Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    Article  PubMed  CAS  Google Scholar 

  • Peters LL, Lambert AJ, Zhang W, Churchill GA, Brugnara C et al (2006) Quantitative trait loci for baseline erythroid traits. Mamm Genome 17:298–309

    Article  PubMed  CAS  Google Scholar 

  • Petzer AL, Hogge DE, Lansdorp PM, Reid DS, Eaves CJ (1996) Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci U S A 93:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Ploemacher RE, van der Sluijs JP, van Beurden CAJ, Baert MRM, Chan PL (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Brooks DM (1992) Phenotypic analysis of mouse haemopoietic stem cells shows a Thy-1-negative subset. Blood 80:1957–1964

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Brooks DM (1993) Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood 82:3327–3332

    PubMed  CAS  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101:6062–6067

    Article  PubMed  CAS  Google Scholar 

  • Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A 87:3584–3588

    Article  PubMed  CAS  Google Scholar 

  • Uchida N, Weissman IL (1992) Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med 175:175–184

    Article  PubMed  CAS  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  PubMed  CAS  Google Scholar 

  • Van Os R, Ausema A, Noach EJK, van Pelt K, Dontje BJH et al (2006) Identification of quantitative trait loci regulating haemopoietic parameters in B6AKRF2 mice. Br J Haematol 132:80–90

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2001–2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Last accessed 7/12/06

  • Yamada Y, Shisa H, Matsushiro H, Kamoto T, Kobayashi Y et al (1994a) T lymphomagenesis is determined by a dominant host gene Thymic Lymphoma Susceptible Mouse-1 (TLSM-1) in mouse models. J Exp Med 180:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Matsushiro H, Ogawa MS, Okamoto K, Nakakuki Y et al (1994b) Genetic predisposition to pre-B lymphomas in SL/Kh strain mice. Cancer Res 54:403–407

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leukaemia Research Fund. CC was funded by an MRC Research Studentship, and GG was supported by the HOPE Foundation for Cancer Research. The authors dedicate this article to Mark Plumb, who was the principal investigator on this project and died in May 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Talbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawad, M., Cole, C., Zanker, A. et al. QTL analyses of lineage-negative mouse bone marrow cells labeled with Sca-1 and c-Kit. Mamm Genome 19, 190–198 (2008). https://doi.org/10.1007/s00335-008-9097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9097-x

Keywords

Navigation