Skip to main content

Advertisement

Log in

A methodological approach to the study of microbotanical remains from grinding stones: a case study in northern Gujarat (India)

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The thorough reconstruction of subsistence practices throughout human history remains one of the most challenging questions in archaeological research. Analyses of microbotanical remains recovered from archaeological artefacts have greatly contributed to our knowledge of past livelihood strategies. However, certain methodological issues are seldom addressed throughout these analyses, including the integration of multiple proxies, the comparison between samples and the interpretation of control samples. This paper addresses these methodological concerns through the analysis of phytoliths and starch grains from a total of 80 samples from grinding tools from four archaeological occupations (ca. 7150–1900 cal bc) in northern Gujarat (NW India). The results were compared with 26 control samples from the same sedimentary matrix from which the tools were recovered and 12 control samples from laboratory consumables. Multivariate statistics were applied to (a) compare control samples with grinding stones to assess sample contamination and representativeness, (b) compare samples from different sites, and (c) identify tool clusters within a site. This study stresses the importance of the integrated analysis of phytoliths and starch grains and the application of multivariate statistics, which allow for stronger interpretations on the use and post-depositional trajectories of grinding stones, thus offering a solid framework for the reconstruction of past subsistence strategies. Moreover, the results show that the inhabitants of northern Gujarat continuously exploited small millets throughout the Holocene and that pulses, secondary at first, became a fundamental part of their subsistence strategy with the advent of settled life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun Caves using a quantitative approach. In: Meunier D, Colin F (eds) Phytoliths: applications in earth sciences and human history. Taylor & Francis, London, pp 251–266

    Google Scholar 

  • Albert RM, Bar-Yosef O, Meignen L, Weiner S (2003) Quantitative phytolith study of hearths from the Natufian and Middle Palaeolithic levels of Hayonim Cave (Galilee, Israel). J Archaeol Sci 30:461–480. doi:10.1006/jasc.2002.0854

    Article  Google Scholar 

  • Aranguren B, Becattini R, Mariotti Lippi M (2007) Grinding flour in Upper Palaeolithic Europe (25000 years bp). Antiquity 81:845–855

    Article  Google Scholar 

  • Balbo AL, Iriarte E, Arranz A, Zapata L, Lancelotti C, Madella M, Teira L, Jiménez M, Braemer F, Ibáñez JJ (2012) Squaring the circle. Social and environmental implications of Pre-Pottery Neolithic building technology at Tell Qarassa (South Syria). PLoS One 7:e42,109. doi:10.1371/journal.pone.0042109

    Article  Google Scholar 

  • Balbo AL, Cabanes D, García-Granero JJ, Bonet A, Ajithprasad P, Terradas X (2014) A microarchaeological approach for the study of pits. Environ Archaeol 20:390–405. doi:10.1179/1749631414Y.0000000044

    Article  Google Scholar 

  • Ball T, Gardner JS, Brotherson JD (1996) Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank. and T. aestivum L.) using computer-assisted image and statistical analyses. J Archaeol Sci 23:619–632. doi:10.1006/jasc.1996.0058

    Article  Google Scholar 

  • Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum (Gramineae). Am J Bot 86:1,615–1,623

    Article  Google Scholar 

  • Ball TB, Ehlers R, Standing MD (2009) Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed Sci 59:505–512. doi:10.1270/jsbbs.59.505

    Article  Google Scholar 

  • Balme J, Beck WE (2002) Starch and charcoal: useful measures of activity areas in archaeological rockshelters. J Archaeol Sci 29:157–166. doi:10.1006/jasc.2001.0700

    Article  Google Scholar 

  • Barton H, Torrence R, Fullagar R (1998) Clues to stone tool function re-examined: comparing starch grain frequencies on used and unused obsidian artefacts. J Archaeol Sci 25:1,231–1,238. doi:10.1006/jasc.1998.0300

    Article  Google Scholar 

  • Bhan KK, Ajithprasad P (2008) Excavations at Shikarpur 2007-2008: a coastal port and craft production center of the Indus Civilization in Kutch, India. http://a.harappa.com/sites/g/files/g65461/f/Excavations-at-Shikarpur-2007.pdf. Accessed Nov 2014

  • Boyd WE, Lentfer CJ, Torrence R (1998) Phytolith analysis for a wet tropics environment: methodological issues and implications for the archaeology of Garua Island, West New Britain, Papua New Guinea. Palynol 22:213–228. doi:10.1080/01916122.1998.9989510

    Article  Google Scholar 

  • Briuer FL (1976) New clues to stone tool function: plant and animal residues. Am Antiq 41:478–484

    Article  Google Scholar 

  • Cabanes D, Shahack-Gross R (2015) Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology. PLoS One 10:e0125,532. doi:10.1371/journal.pone.0125532

    Article  Google Scholar 

  • Chandler-Ezell K, Pearsall DM (2003) “Piggyback” microfossil processing: joint starch and phytolith sampling from stone tools. Phytolitharien 15:2–8

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707.x

    Article  Google Scholar 

  • Coil J, Korstanje MA, Archer S, Haston CA (2003) Laboratory goals and considerations for multiple microfossil extraction in archaeology. J Archaeol Sci 30(991–1):008. doi:10.1016/S0305-4403(02)00285-6

    Google Scholar 

  • Conesa F, Devanthéry N, Balbo AL, Madella M, Monserrat O (2014) Use of satellite SAR for understanding long-term human occupation dynamics in the monsoonal semi-arid plains of North Gujarat, India. Rem Sens 6:11,420–11,443. doi:10.3390/rs61111420

    Article  Google Scholar 

  • Craig O, Mulville J, Parker Pearson M, Sokol R, Gelsthorpe K, Stacey R, Collins M (2000) Detecting milk proteins in ancient pots. Nature 408:312

    Article  Google Scholar 

  • Crowther A, Haslam M, Oakden N, Walde D, Mercader J (2014) Documenting contamination in ancient starch laboratories. J Archaeol Sci 49:90–104. doi:10.1016/j.jas.2014.04.023

    Article  Google Scholar 

  • Dickau R, Bruno MC, Iriarte J, Prümers H, Betancourt CJ, Holst I, Mayle FE (2012) Diversity of cultivars and other plant resources used at habitation sites in the Llanos de Mojos, Beni, Bolivia: evidence from macrobotanical remains, starch grains, and phytoliths. J Archaeol Sci 39:357–370. doi:10.1016/j.jas.2011.09.021

    Article  Google Scholar 

  • Field J, Cosgrove R, Fullagar R, Lance B (2009) Starch residues on grinding stones in private collections: a study of morahs from the tropical rainforests of NE Queensland. In: Haslam M, Robertson G, Crowther A, Nugent S, Kirkwood L (eds) Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy. ANU E Press, Canberra, pp 228–238

    Google Scholar 

  • Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20:1–86. doi:10.1007/s10963-006-9006-8

    Article  Google Scholar 

  • Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:219–246. doi:10.1179/174963106x123232

    Article  Google Scholar 

  • Fuller DQ, Stevens CJ (2009) Agriculture and the development of complex societies: an archaeobotanical agenda. In: Fairbairn A, Weiss E (eds) From foragers to farmers. Papers in honour of Gordon C. Hillman. Oxbow Books, Oxford, pp 37–57

    Google Scholar 

  • Gadekar C, Ajithprasad P, Madella M (2013) Crested ridge technique and lithic assemblage from Datrana, Gujarat. Heritage 1:16–28

    Article  Google Scholar 

  • Gadekar C, Ajithprasad P, Madella M, Balbo A, Rajesh SV, Rondelli B, García-Granero JJ, Rodríguez D, Yanitto V (2014a) Continuation of a tradition over five thousand years: lithic assemblage from Loteshwar, North Gujarat, western India. Heritage 2:283–304

    Google Scholar 

  • Gadekar C, Rajesh SV, Ajithprasad P (2014b) Shikarpur lithic assemblage: new questions regarding Rohri chert blade production. J Lithic Stud 1:137–149. doi:10.2218/jls.v1i1.764

    Article  Google Scholar 

  • García-Granero JJ, Lancelotti C, Madella M (2015a) A tale of multi-proxies: integrating macro- and microbotanical remains to understand subsistence strategies. Veget Hist Archaeobot 24:121–133. doi:10.1007/s00334-014-0486-7

    Article  Google Scholar 

  • García-Granero JJ, Gadekar C, Esteban I, Lancelotti C, Madella M, Ajithprasad P (2015b) What is on the craftsmen’s menu? Plant consumption at Datrana, a 5000-year-old lithic blade workshop in North Gujarat, India. Archaeol Anthropol Sci doi:10.1007/s12520-015-0281-0

  • García-Granero JJ, Lancelotti C, Madella M, Ajithprasad P (in press) Millets and herders: the origins of plant cultivation in semi-arid North Gujarat, India. Curr Anthropol

  • Giovannetti MA, Lama VS, Bartoli CG, Capparelli A (2008) Starch grain characterization of Prosopis chilensis (Mol.) Stuntz and P. flexuosa DC, and the analysis of their archaeological remains in Andean South America. J Archaeol Sci 35:2,973–2,985. doi:10.1016/j.jas.2008.06.009

    Article  Google Scholar 

  • Gott B, Barton H, Samuel D, Torrence R (2006) Biology of starch. In: Torrence R, Barton H (eds) Ancient starch research. Left Coast Press, Walnut Creek, pp 35–46

    Google Scholar 

  • Hart TC (2011) Evaluating the usefulness of phytoliths and starch grains found on survey artifacts. J Archaeol Sci 38:3,244–3,253. doi:10.1016/j.jas.2011.06.034

    Article  Google Scholar 

  • Haslam M (2004) The decomposition of starch grains in soils: implications for archaeological residue analyses. J Archaeol Sci 31:1,715–1,734. doi:10.1016/j.jas.2004.05.006

    Article  Google Scholar 

  • Henry AG, Piperno DR (2008) Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqa’i, Syria. J Archaeol Sci 35:1,943–1,950. doi:10.1016/j.jas.2007.12.005

    Article  Google Scholar 

  • Horrocks M (2005) A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. J Archaeol Sci 32:1,169–1,175. doi:10.1016/j.jas.2005.02.014

    Article  Google Scholar 

  • ICSN (2011) The International code for starch nomenclature. http://fossilfarm.org/ICSN/Code.html. Accessed Dec 2014

  • Kealhofer L, Torrence R, Fullagar R (1999) Integrating phytoliths within use-wear/residue studies of stone tools. J Archaeol Sci 26:527–546. doi:10.1006/jasc.1998.0332

    Article  Google Scholar 

  • Kimata M, Ashok EG, Seetharam A (2000) Domestication, cultivation and utilization of two small millets, Brachiaria ramosa and Setaria glauca (Poaceae), in South India. Econ Bot 54:217–227. doi:10.1007/BF02907825

    Article  Google Scholar 

  • Lancelotti C, Madella M (2012) The ‘invisible’ product: developing markers for identifying dung in archaeological contexts. J Archaeol Sci 39:953–963. doi:10.1016/j.jas.2011.11.007

    Article  Google Scholar 

  • Lancelotti C, Balbo AL, Madella M et al (2014) The missing crop: investigating the use of grasses at Els Trocs, a Neolithic cave site in the Pyrenees (1564 m asl). J Archaeol Sci 42:456–466. doi:10.1016/j.jas.2013.11.021

    Article  Google Scholar 

  • Lentfer CJ (2009) Going bananas in Papua New Guinea: a preliminary study of starch granule morphotypes in Musaceae fruit. Ethnobot Res Appl 7:217–238

    Article  Google Scholar 

  • Lentfer C, Therin M, Torrence R (2002) Starch grains and environmental reconstruction: a modern test case from West New Britain, Papua New Guinea. J Archaeol Sci 29:687–698. doi:10.1006/jasc.2001.0783

    Article  Google Scholar 

  • Liu L, Ge W, Bestel S, Jones D, Shi J, Song Y, Chen X (2011) Plant exploitation of the last foragers at Shizitan in the Middle Yellow River Valley China: evidence from grinding stones. J Archaeol Sci 38:3,524–3,532. doi:10.1016/j.jas.2011.08.015II

    Article  Google Scholar 

  • Liu L, Ma S, Cui J (2014) Identification of starch granules using a two-step identification method. J Archaeol Sci 52:421–427. doi:10.1016/j.jas.2014.09.008

    Article  Google Scholar 

  • Lu H-Y, Wu N-Q, Yang X-D, Jiang H, Liu KB, Liu T-S (2006) Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quat Sci Rev 25:945–959. doi:10.1016/j.quascirev.2005.07.014

    Article  Google Scholar 

  • Madella M, Power-Jones AH, Jones MK (1998) A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. J Archaeol Sci 25:801–803. doi:10.1006/jasc.1997.0226

    Article  Google Scholar 

  • Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) Exploitation of plant resources by neanderthals in Amud Cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719. doi:10.1006/jasc.2001.0743

    Article  Google Scholar 

  • Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260. doi:10.1093/aob/mci172

    Article  Google Scholar 

  • Madella M, Jones MK, Echlin P, Powers-Jones A, Moore M (2009) Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quat Int 193:32–40. doi:10.1016/j.quaint.2007.06.012

    Article  Google Scholar 

  • Madella M, Ajithprasad P, Lancelotti C, Rondelli B, Balbo A, French C, Rodríguez Antón D, García-Granero Fos JJ, Yannitto V, Rajesh SV, Gadekar CS, Briz i Godino I (2010) Social and environmental transitions in arid zones: the North Gujarat Archaeological Project—NoGAP. Antiq Proj Gallery 84(325):1–4

    Google Scholar 

  • Madella M, Lancelotti C, García-Granero JJ (2013) Millet microremains—an alternative approach to understand cultivation and use of critical crops in prehistory. Archaeol Anthropol Sci. doi:10.1007/s12520-013-0130-y

    Google Scholar 

  • Mercader J (2009) Mozambican grass seed consumption during the Middle Stone Age. Science 326:1,680–1,683. doi:10.1126/science.1173966

    Article  Google Scholar 

  • Mercader J, Astudillo F, Barkworth M, Bennet T, Esselmon C, Kinyanjui R, Grossman DL, Walde D (2010) Poaceae phytoliths from the Niassa Rift, Mozambique. J Archaeol Sci 37:1,953–1,967. doi:10.1016/j.jas.2010.03.001

    Article  Google Scholar 

  • Mercader J, Bennert T, Esselmont C, Simpson S, Walde D (2011) Soil phytoliths from miombo woodlands in Mozambique. Quat Res 75:138–150. doi:10.1016/j.yqres.2010.09.008

    Article  Google Scholar 

  • Out WA, Pertusa Grau JF, Madella M (2014) A new method for morphometric analysis of opal phytoliths from plants. Microsc Microanal 20:1,876–1,887. doi:10.1017/S1431927614013270

    Article  Google Scholar 

  • Out WA, Ryan P, García-Granero JJ, Barastegui J, Maritan L, Madella M, Usai D (in press) Plant exploitation in Neolithic Sudan: a review in the light of new data from the cemeteries R12 and Ghaba. Quat Int. doi:10.1016/j.quaint.2015.12.066

  • Patel AK (2009) Occupational histories, settlements, and subsistence in western India: what bones and genes can tell us about the origins and spread of pastoralism. Anthropozoologica 44:173–188. doi:10.5252/az2009n1a8

    Article  Google Scholar 

  • Pearsall DM, Chandler-Ezell K, Zeidler JA (2004) Maize in ancient Ecuador: results of residue analysis of stone tools from the Real Alto site. J Archaeol Sci 31:423–442. doi:10.1016/j.jas.2003.09.010

    Article  Google Scholar 

  • Peek S, Clementz MT (2012) Starch grain morphology of the seagrasses Halodule wrightii, Ruppia maritima, Syringodium filiforme, and Thalassia testudinum. Aquat Bot 96:63–66. doi:10.1016/j.aquabot.2011.10.001

    Article  Google Scholar 

  • Perry L, Sandweiss DH, Piperno DR, Rademaker K, Malpass MA, Umire A, De la Vera P (2006) Early maize agricultire and interzonal interaction in northern Peru. Nature 440:76–79. doi:10.1038/nature04294

    Article  Google Scholar 

  • Perry L, Dickau R, Zarrillo S et al (2007) Starch fossils and the domestication and dispersal of chilipeppers (Capsicum spp. L.) in the Americas. Science 315:986–988. doi:10.1126/science.1136914

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira Press, Lanham

    Google Scholar 

  • Piperno DR (2009) Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat Int 193:146–159. doi:10.1016/j.quaint.2007.11.011

    Article  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2,101–2,103. doi:10.1073/pnas.98.4.2101

    Article  Google Scholar 

  • Piperno DR, Holst I (1998) The presence of starch grains on prehistoric stone tools from the humid neotropics: indications of early tuber use and agriculture in Panama. J Archaeol Sci 25:765–776. doi:10.1006/jasc.1997.0258

    Article  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5,019–5,024. doi:10.1073/pnas.0812525106

    Article  Google Scholar 

  • Portillo M, Ball T, Manwaring J (2006) Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa Schreb. Econ Bot 60:121–129. doi:10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2

    Article  Google Scholar 

  • Portillo M, Albert RM, Henry DO (2009) Domestic activities and spatial distribution in Ain Abū Nukhayla (Wadi Rum, Southern Jordan): the use of phytoliths and spherulites studies. Quat Int 193:174–183. doi:10.1016/j.quaint.2007.06.002

    Article  Google Scholar 

  • Power-Jones AH, Padmore J (1993) The use of quantitative methods and statistical analyses in the study of opal phytoliths. MASCA Res Pap Sci Archaeol 10:47–56

    Google Scholar 

  • R Core Development Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Radomski KU, Neumann K (2011) Grasses and grinding stones: inflorescence phytoliths from modern West African Poaceae and archaeological stone artefacts. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past: current approaches to African archaeobotany. Africa Magna Verlag, Frankfurt, pp 153–166

    Google Scholar 

  • Rajesh SV, Krishnan K, Ajithprdasad P, Madella M (2013) Pre-Prabhas assemblage from Gujarat, western India. Heritage 1:181–209

    Google Scholar 

  • Reddy SN (1997) If the threshing floor could talk: integration of agriculture and pastoralism during the Late Harappan in Gujarat, India. J Anthropol Archaeol 16:162–187. doi:10.1006/jaar.1997.0308

    Article  Google Scholar 

  • Rosen AM, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. J Archaeol Sci 21:125–132. doi:10.1006/jasc.1994.1013

    Article  Google Scholar 

  • Sonawane VH (2000) Early farming communities of Gujarat, India. Indo-Pac Prehist Assoc Bull 19:137–146

    Google Scholar 

  • Torrence R (2006) Starch and archaeology. In: Torrence R, Barton H (eds) Ancient starch research. Left Coast Press, Walnut Creek, pp 17–34

    Google Scholar 

  • Torrence R, Wright R, Conway R (2004) Identification of starch granules using image analysis and multivariate techniques. J Archaeol Sci 31:519–532. doi:10.1016/j.jas.2003.09.014

    Article  Google Scholar 

  • Wilson J, Hardy K, Allen R, Copeland L, Wrangham R, Collins M (2010) Automated classification of starch granules using supervised pattern recognition of morphological properties. J Archaeol Sci 37:594–604. doi:10.1016/j.jas.2009.10.024

    Article  Google Scholar 

  • Wright K (1992) A classification system for ground stone tools from the prehistoric Levant. Paléorient 18:53–81. doi:10.3406/paleo.1992.4573

    Article  Google Scholar 

  • Wright KI (1994) Ground-stone tools and hunter-gatherer subsistence in southwest Asia: implications for the transition to farming. Am Antiq 59:238–263

    Article  Google Scholar 

  • Yang X, Yu J, Lu H, Ciu T, Guo J, Ge Q (2009) Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing. Sci China Ser D 52:1,164–1,171. doi:10.1007/s11430-009-0089-9

    Article  Google Scholar 

  • Yang X, Barton HJ, Wan Z, Li Q, Ma Z, Li M, Zhang D, Wei J (2013) Sago-type palms were an important plant food prior to rice in southern subtropical China. PLoS One 8:e63,148. doi:10.1371/journal.pone.0063148

    Article  Google Scholar 

  • Zarrillo S, Pearsall DM, Raymond JS, Tisdale MA, Quon DJ (2008) Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. Proc Natl Acad Sci USA 105:5,006–5,011. doi:10.1073/pnas.0800894105

    Article  Google Scholar 

  • Zurro D (2011) Ni carne ni pescado (consumo de recursos vegetales en la Prehistoria): análisis de la variabilidad de los conjuntos fitolitológicos en contextos cazadores-recolectores. Online publishing service, Universitat Auntònoma de Barcelona. http://tdx.cesca.cat/handle/10803/32145

Download references

Acknowledgments

This work has benefited from discussions with several researchers and the comments of three anonymous reviewers. Special thanks are due to P. Ajithprasad, D. Zurro, H. Barton, J. Ruiz-Pérez and the participants of the 9th International Meeting on Phytolith Research in Brussels (Belgium, September 2014), whose comments greatly improved a previous version of this manuscript. Fieldwork at LTS, DTR and VHV was carried out within the North Gujarat Archaeological Project (NoGAP) and funded by the Spanish Ministry of Education, Culture and Sport (Programa de Ayudas para Proyectos Arqueológicos en el Exterior 2009, 2010 and 2011) and the Catalan Government (Programa EXCAVA 2009). The Archaeological Survey of India funded fieldwork at SKP and the Spanish Ministry of Economy and Competitiveness funded laboratory work (Programa I+D, HAR2010-16052). We are grateful to the members of the NoGAP and the Department of Archaeology and Ancient History of The MSU Baroda (Gujarat, India) for their help during the field and laboratory work in India, and to the Archaeological Survey of India for granting excavation permissions. JJGG acknowledges funding from a JAE-Predoc PhD grant (Spanish National Research Council and European Social Fund). CaSEs is a Grup de Recerca Emergent (SGR-e 1417) of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José García-Granero.

Additional information

Communicated by K. Neumann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Granero, J.J., Lancelotti, C. & Madella, M. A methodological approach to the study of microbotanical remains from grinding stones: a case study in northern Gujarat (India). Veget Hist Archaeobot 26, 43–57 (2017). https://doi.org/10.1007/s00334-016-0557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-016-0557-z

Keywords

Navigation