Skip to main content
Log in

Stochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We prove well-posedness results for stochastic nonlinear Schrödinger equations with linear multiplicative Wiener noise, including the nonconservative case. Our approach is different from the standard literature on stochastic nonlinear Schrödinger equations. By a rescaling transformation we reduce the stochastic equation to a random nonlinear Schrödinger equation with lower-order terms and treat the resulting equation by a fixed point argument based on generalizations of Strichartz estimates proved by Marzuola et al. (J Funct Anal 255(6):1479–1553, 2008). This approach makes it possible to improve earlier well-posedness results obtained in the conservative case by a direct approach to the stochastic Schrödinger equation. In contrast to the latter, we obtain well-posedness in the full range \([1, 1 + 4/d)\) of admissible exponents in the nonlinear part (where \(d\) is the dimension of the underlying Euclidean space), i.e., in exactly the same range as in the deterministic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbu, V., Röckner, M.: On a random scaled porous media equation. J. Differ. Equ. 251, 2494–2514 (2011)

    Article  MATH  Google Scholar 

  • Barbu, V., Röckner, M.: Stochastic variational inequalities and applications to the total variations flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal. 209, 797–834 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Case. The Diffusive Case, Lecture Notes Physics, vol. 782, Springer, Berlin (2009)

  • Barchielli, A., Pelegrini, C., Petruccio, F.: Stochastic Schrödinger equations with coloured noise. Lett. J. Explor. Front. Phys. EPL 91 (2010)

  • Cebotarev, A.M., Fagnola, F.: Sufficient conditions for conservativity of minimal quantum semigroups. J. Funct. Anal. 153(2), 382–401 (1998)

    Article  MathSciNet  Google Scholar 

  • de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation via multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)

    Article  MATH  Google Scholar 

  • de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in \(H^1\). Stoch. Anal. Appl. 21, 97–126 (2003)

    Article  MATH  Google Scholar 

  • de Bouard, A., Debussche, A.: Blow up for the stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33, 1078–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, MA (2008)

    MATH  Google Scholar 

  • Doi, S.: On the Cauchy problem for Schrödinger type equation and the regularity of solutions. J. Math. Kyoto Univ. 34(2), 319–328 (1994)

    MATH  MathSciNet  Google Scholar 

  • Doi, S.: Remarks on the Cauchy problem for Schrödinger-type equations. Commun. PDE 21, 163–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Fagnola, F., Mora, C.M.: Stochastic Schrödinger equations and applications to Ehrenfast-type theorems. ALEA. Lat. J. Probab. Math. Stat. 10(1), 191–223 (2013)

    MATH  MathSciNet  Google Scholar 

  • Grecksch, W., Lisei, H.: Stochastic nonlinear equations of Schrödinger type. Stoch. Anal. Appl. 29(4), 631–653 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Kato, T.: Nonliner Schrödinger equations, Schrödinger operators (Sønderberg 1988), 218–263. Lecture Notes in Physics, 345, Springer, Berlin (1989)

  • Kendal, M., Price, C.J.: Zeros of Brownian polynomials. Stoch. Rep. 70, 3–4, 217–308

  • Krein, S.G.: Linear Differential Equations in Banach Spaces. Translations of Mathematical Monographs, vol. 29. American Mathematical Society (1972)

  • Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255(6), 1479–1553 (2008)

    Article  MathSciNet  Google Scholar 

  • Mora, C.M., Robolledo, R.: Basic properties of nonlinear stochastic Schrödinger equation deriven by Brownian motions. Ann. Appl. Probab. 18(2), 59–619 (2008)

    Article  MathSciNet  Google Scholar 

  • Tataru, D.: Personal Communication

Download references

Acknowledgments

The authors are indebted to Daniel Tataru for fruitful discussions and suggestions regarding the proof of Lemma 4.1 Tataru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu.

Additional information

Communicated by Irene Fonseca.

Viorel Barbu was supported by a grant from the Romanian National Authority for Scientific Research, DSPDE 1 ERC/02.07.2012 and BiBos-Research Centre. Michael Röckner’s research was supported by the DFG through CRC 701.

Appendices

Appendix

Proof of Lemma 4.1

Under assumption (H1), the coefficients \(c,b\) defined in (3.4) satisfy (1.4)–(1.6) in Marzuola et al. (2008) on \([0,T]\times {\mathbb {R}}^d\). Recall that in Marzuola et al. (2008) [e.g., (1.1)], the common notation \(D_t=-i{\partial }_t,\,D_j=-i{\partial }_{x_j}\) is used. Then, by Theorem 1.13 in Marzuola et al. (2008) and, more precisely, by estimate (1.24) (Remark 1.17 in Marzuola et al. 2008), we have

$$\begin{aligned} \Vert u\Vert _{L^{q_1}(0,T;L^{p_1})}\le C\left( |u_0|_{2}+\Vert f\Vert _{L^{q'_2}(0,T;L^{p'_2})} +\Vert u\Vert _{L^2(0,T;L^2(|\xi |\le 2R))}\right) \end{aligned}$$
(6.3)

for \(R\) sufficiently large.

We will prove first that (4.3) holds for \(T\) sufficiently small. To this end, we note that

$$\begin{aligned} \Vert u\Vert ^2_{L^2(0,T;L^2(|\xi |\le 2R))}&\le (m(B_{2R}))^{\frac{p_1-2}{p_1}} \int \limits _0^T|u(t)|^2_{L^{p_1}}\hbox {d}t \\&\le (m(B_{2R}))^{\frac{p_1-2}{p_1}} T^{\frac{q_1-2}{q_1}} \Vert u\Vert ^2_{L^{q_1}(0,T;L^{p_1})}, \end{aligned}$$

where \(m(B_{2R})\) is the volume of the ball \(B_{2R}\) of radius \(2R\). For simplicity, we assume that \(q_1>2\), which is, in fact, the case in the application of Lemma 4.1 to problem (3.5). Then for

$$\begin{aligned} 0<T=\left( (2C)^{-2}(m(B_{2R})) ^{-\frac{p_1-2}{p_1}}\right) ^{\frac{q_1}{q_1-2}} \end{aligned}$$
(6.4)

we obtain by (6.3) that

$$\begin{aligned} \Vert u\Vert _{L^{q_1}(0,T;L^{p_1})} \le 2C\left( |u_0|_2+\Vert f\Vert _{L^{q'_2}(0,T;L^{p'_2})}\right) . \end{aligned}$$
(6.5)

For \(q_1={\infty },\ p_1=2\) we obtain in a similar way

$$\begin{aligned} \Vert u\Vert _{L^{\infty }(0,T;L^{2})}\le 2C\left( |u_0|_2 +\Vert f\Vert _{L^{q'_2}(0,T;L^{p'_2})}\right) \end{aligned}$$

for \(0<T<(2C)^{-2}\). Reiterating (6.5) on the interval \((T,2T)\), we therefore obtain

$$\begin{aligned} \Vert u\Vert _{L^{q_1}(T,2T;L^{p_1})}&\le 2C\left( |u(T)|_2+\Vert f\Vert _{L^{q'_2}(T,2T; L^{p'_2})}\right) \\&\le 2C\left[ 2C(|u_0|_2+ \Vert f\Vert _{L^{q'_2}(0,T;L^{p'_2})}) +\Vert f\Vert _{L^{q'_2}(T,2T;L^{p'_2})}\right] \\&\le 2C\left[ 2C|u_0|_2 +(2C+1)\Vert f\Vert _{L^{q'_2}(0,2T;L^{p'_2})}\right] ,\\&\le 4C(C+1)\left( |u_0|_2+\Vert f\Vert _{L^{q'_2}(0,2T;L^{p'_2})}\right) . \end{aligned}$$

Hence,

$$\begin{aligned} \Vert u\Vert _{L^{q_1}(0,2T;L^{p_1})} \le 8C(C+1)\left( |u_0|_2+\Vert f\Vert _{L^{q'_2} (0,2T;L^{p'_2})}\right) . \end{aligned}$$

Then, after a finite number of steps, we obtain estimate (4.3) on an arbitrary bounded interval, as claimed.

Furthermore, for each \(t\in [0,T]\) we may take

$$\begin{aligned} C_t&= \sup \{\Vert U(t,0)u_0\Vert _{L^{q_1}(0,t;L^{p_1})} ;|u_0|_2\le 1\}\\&\quad + \sup \left\{ \left\| \int \limits _0^tU(t,s)f(s)\hbox {d}s\right\| _{L^{q_1}(0,t;L^{p_1})}; \Vert f\Vert _{L^{q'_2}(0,t;L^{p'_2})}=1\right\} . \end{aligned}$$

Obviously, the function \(t\rightarrow C_t\) is monotonically increasing, \(C_0=0\), and it follows by (4.3) and standard arguments that it is continuous. Since by separability the sup in the definition of \(C_t\) is a sup over countably many \(u_0\in L^2\) and \(f\in L^{q'_2}(0,t;L^{p'_2})\subset L^1(0,t;H^{-1})\) (by Sobolev embedding) and since, as seen earlier in Lemma 3.3, \(t\rightarrow U(t,0)u_0,\,t\rightarrow \int _0^tU(t,s)f(s)\hbox {d}s\) is adapted, we conclude that \(t\rightarrow C_t\) is adapted to the filtration \((\mathcal {F}_t)_{t\ge 0}\). But then, as a continuous process, \(C_t\) is \((\mathcal {F}_t)\)-progressively measurable, thereby completing the proof. \(\square \)

Lemma 6.1

  1. (i)

    Let \(y=y(t),\ t\in [0,T]\), be an \(L^2\)-valued \((\mathcal {F}_t)\)-adapted process with continuous sample paths satisfying (3.3), (3.6), and (3.7). Then \(X:=e^Wy\) is a solution to (2.1).

  2. (ii)

    Suppose \(X=X(t),\,t\in [0,T]\) is an \(L^2\)-valued \((\mathcal {F}_t)\)-adapted process with continuous sample paths satisfying (2.1), (2.2), and (2.3). Then \(y:=e^{-W}X\) satisfies (3.3) [equivalently, (3.5)].

Before going to the proof of Lemma 6.1, a few remarks are in order concerning the formal calculation given at the beginning of Sect. 3 to link (2.1) and (3.2). In fact, it is purely heuristic since we applied Itô’s product rule to \(y\), though it is not of bounded variation in \(L^2\). Furthermore, taking into account that the exponential is an operator of the Nemitsky type in \(L^2\) that is not differentiable, the infinite-dimensional Itô formula in \(L^2\) is not justified. Also, when we try to apply Itô’s product rule to real-valued stochastic processes after evaluating the \(L^2\)-valued processes \(X,\,W,\,y\) at \(\xi \in {\mathbb {R}}^d\), which by itself is delicate since \(L^2\) consists of equivalence classes of functions, we run into problems since, for example, again \(X(t,\xi ),\,y(t,\xi ),\,t\in [0,T]\), might not be semimartingales.

The following proof is based on the stochastic Fubini theorem and uses the stochastic calculus for complex-valued processes and their products in \(\mathbb {C}\). (We refer the reader to Kendal and Price, Sect. 2, as background literature in this regard.)

Proof of Lemma 7.1

We only prove (i) since (ii) can be proved analogously. Let \({\varphi }\in H^2({\mathbb {R}}^d)\). Then, for every \(t\in [0,T]\), we have

$$\begin{aligned} \left<{\varphi },e^{W(t)}y(t)\right>_2=\sum ^{\infty }_{j=1} \left<\overline{e^{W(t)}}{\varphi },f_j\right>_2\left<f_j,y(t)\right>_2, \end{aligned}$$

where \(\{f_j\}^{\infty }_{j=1}\) is an orthonormal basis in \(L^2;\ f_j\in H^2({\mathbb {R}}^d)\).

By Itô’s formula, we have for all \(\xi \in {\mathbb {R}}^d,\,t\in [0,T]\),

$$\begin{aligned} e^{W(t,\xi )}=1+\int \limits _0^t e^{W(s,\xi )}\hbox {d}W(s,\xi ) +\widetilde{\mu }(\xi )\int \limits _0^t e^{W(s,\xi )}\hbox {d}s. \end{aligned}$$

Fix \(j\in {\mathbb {N}}\). Then we have \(\mathbb {P}\text{-a.s. }\), for all \(t\in [0,T],\)

$$\begin{aligned}&\left<\overline{e^{W(t)}}{\varphi },f_j\right>_2 \\&\quad =\!\left<{\varphi },f_j\right>_2\!+\!\sum ^N_{k=1}\overline{\mu }_k \int \limits _{{\mathbb {R}}^d}{\varphi }(\xi )e_k(\xi ) \bar{f}_j(\xi )\hbox {d}\xi \int \limits _0^t\overline{e^{W(s,\xi )}}\hbox {d}{\beta }_k(s) \!+\!\int \limits _0^t\left<\overline{\widetilde{\mu }}\,\overline{e^{W(s)}} {\varphi },f_j\right>_2\hbox {d}s\\&\quad =\left<{\varphi },f_j\right>_2+\sum ^N_{k=1}\overline{\mu }_k \int \limits _0^t\left< e_k\,\overline{e^{W(s)}}{\varphi },f_j\right>_2\mathrm{d}{\beta }_k(s) +\int \limits _0^t\left<\overline{\widetilde{\mu }}\,\overline{e^{W(s)}}{\varphi },f_j\right>_2\hbox {d}s. \end{aligned}$$

(Here we have used the stochastic Fubini theorem in the second equality.)

Now we set \(A_0=i{\Delta }\), \(D(A_0)=H^2({\mathbb {R}}^d)\), and \(J_{\varepsilon }=(I+{\varepsilon }A_0)^{-1}\).

Let \(y_{\varepsilon }=J_{\varepsilon }(y)\). Then \(y_{\varepsilon }\in C([0,T],H^2({\mathbb {R}}^d))\) and

$$\begin{aligned} \frac{{\partial }y_{\varepsilon }}{{\partial }t}&= -i J_{\varepsilon }(e^{-W}{\Delta }(e^Wy))-J_{\varepsilon }((\mu +\widetilde{\mu }) y)\nonumber \\&\quad -{\lambda }iJ_{\varepsilon }(|e^{({\alpha }-1)W}|\,|y|^{{\alpha }-1}y),\quad t\in (0,T),\\ y_{\varepsilon }(0)&= J_{\varepsilon }(x)=x_{\varepsilon }.\nonumber \end{aligned}$$
(7.4)

Since \(f_j\in H^2({\mathbb {R}}^d)\), for each \(j,\,\left<f_j,y_{\varepsilon }(t)\right>_2,\ t\in [0,T]\), is of bounded variation. Hence, we can apply Itô’s product rule (for scalar-valued processes) to obtain

$$\begin{aligned}&\left<\overline{e^{W(t)}}{\varphi },f_j\right>_2\left<f_j,y_{\varepsilon }(t)\right>_2 =\left<{\varphi },f_j\right>_2\left<f_j,x_{\varepsilon }\right>_2\\&\quad +i\int \limits _0^t\left<\overline{e^{W(s)}}{\varphi },f_j\right>_2 \left<f_j,J_{\varepsilon }(e^{-W(s)}{\Delta }(e^{W(s)}y(s)))\right>_2\hbox {d}s\\&\quad -\int \limits _0^t\left<\overline{e^{W(s)}}{\varphi },f_j\right>_2 \left<f_j,J_{\varepsilon }((\mu +\widetilde{\mu }) y(s))\right>_2\hbox {d}s\\&\quad +{\lambda }i\int \limits _0^t\left<\overline{e^{W(s)}}{\varphi },f_j\right>_2 \left<f_j,J_{\varepsilon }(|e^{({\alpha }-1) W(s)}|\,|y(s)|^{{\alpha }-1}y(s))\right>_2\hbox {d}s\\&\quad +\sum ^N_{k=1}\overline{\mu }_k\int \limits _0^t \left<f_j,y_{\varepsilon }(s)\right>_2 \left<e_k\,\overline{e^{W(s)}}{\varphi },f_j\right>_2\mathrm{d}{\beta }_k(s)\\&\quad +\int \limits _0^t\left<f_j,y_{\varepsilon }(s)\right>_2\left<\overline{\widetilde{\mu }}\, \overline{e^{W(s)}}{\varphi },f_j\right>_2\hbox {d}s. \end{aligned}$$

(We note that, since \(J_{\varepsilon }(e^{-W}{\Delta }(e^Wy))\in C([0,T];L^2)\), the second integral in the preceding equality makes sense.)

Now, summing over \(j\in {\mathbb {N}}\) and interchanging the infinite sum with the integrals, we obtain \(\mathbb {P}\text{-a.s. }\), for all \(t\in [0,T]\),

$$\begin{aligned}&\left<{\varphi },e^{W(t)}y_{\varepsilon }(t)\right>_2=\left<{\varphi },x_{\varepsilon }\right>_2 +i \int \limits _0^t\left<{\varphi },e^{W(s)} J_{\varepsilon }(e^{-W(s)}{\Delta }(e^{W(s)}y(s)))\right>_2\hbox {d}s\\&\quad - \int \limits _0^t\!\!\left<{\varphi },e^{W(s)}J_{\varepsilon }((\mu +\widetilde{\mu }) y)\right>_2\hbox {d}s +{\lambda }i \int \limits _0^t\!\!\left<{\varphi },e^{W(s)} J_{\varepsilon }(|e^{({\alpha }-1)W}|\,|y(s)|^{{\alpha }-1}y(s))\right>_2\hbox {d}s\\&\quad + \sum ^N_{k=1}\int \limits _0^t \left<{\varphi },\mu _k e_ke^{W(s)}y_{\varepsilon }(s)\right>_2 \hbox {d}{\beta }_k(s) + \int \limits _0^t\left<{\varphi },\widetilde{\mu }e^{W(s)}y_{\varepsilon }(s)\right>_2\hbox {d}s. \end{aligned}$$

On the other hand, we have, for \({\varepsilon }\rightarrow 0\),

$$\begin{aligned} J_{\varepsilon }(f)\rightarrow f \text{ strongly } \text{ in } H^k\text{. } \end{aligned}$$

Furthermore,

$$\begin{aligned} \Vert J_{\varepsilon }(f)\Vert _{H^k}\le \Vert f\Vert _{H^k}, \end{aligned}$$

where \(f\in H^k\) and \(k=0,1,2\). Then we may pass to the limit \({\varepsilon }\rightarrow 0\) in the previous equality to obtain

$$\begin{aligned} \left<{\varphi },e^{W(t)}y(t)\right>_2&= \left<{\varphi },x\right>_2 +i\int \limits _0^t\left<{\varphi },{\Delta }(e^{W(s)}y(s))\right>\hbox {d}s -\int \limits _0^t\left<{\varphi },\mu e^{W(s)}y(s)\right>_2\hbox {d}s\\&\quad +{\lambda }i\int \limits _0^t\left<{\varphi },e^{W(s)}|e^{({\alpha }-1)W(s)}|\, |y(s)|^{{\alpha }-1}y(s)\right>\hbox {d}s\\&\quad +\sum ^N_{k=1}\int \limits _0^t\left<{\varphi },\mu _k e_k e^{W(s)}y(s)\right>_2\mathrm{d}{\beta }_k(s),\quad \forall t\in [0,T], \end{aligned}$$

which implies the fact that \(X(t)=e^{W(t)}y(t)\) is the solution to (2.1), as claimed. In the preceding equality, \(\left<\cdot ,\cdot \right>\) is the pairing between \(L^2\), \(H^2\), and \(H^{-2}\) or, equivalently,

$$\begin{aligned} \left<{\varphi },{\Delta }(e^Wy)\right>=\int \limits _{{\mathbb {R}}^d} {\Delta }{\varphi }\overline{e^W}\bar{y}\,\hbox {d}\xi ,\quad {\varphi }\in H^2. \end{aligned}$$

This completes the proof. \(\square \)

Lemma 6.2

Let \(\tau _{n+1}\) be defined as in Step 2 in the proof of Lemma 4.2. Then \(y_{n+1}\) is adapted to \((\mathcal {F}_t)\).

Proof

We first note that, by \(z_{n+1}=F_n(z_{n+1})\) and Banach’s fixed point theorem, there exists a sequence \(\{v_{n+1,m}\}_{m\ge 1}\), adapted to \((\mathcal {F}_{\tau _n+t})\), satisfying \(v_{n+1,m+1}=F_n(v_{n+1,m})\) for \(m\ge 1,\,v_{n+1,1}(t)=U(\tau _n+t,\tau _n)y_n(\tau _n)\), and \(z_{n+1}=\lim _{m\rightarrow {\infty }}v_{n+1,m}\) in \(C([0,t];L^2)\cap L^q(0,t;L^{{\alpha }+1})),\,t\in [0,\sigma _n]\). Now we define

$$\begin{aligned} u_{n+1,m}(t)=\left\{ \begin{array}{l@{\quad }l} y_n(t),&{}t\in [0,\tau _n],\\ v_{n+1,m}(t-\tau _n),&{}t\in (\tau _n,{\infty }). \end{array}\right. \end{aligned}$$

Thus, \(y_{n+1}=\lim _{m\rightarrow {\infty }}u^{\tau _{n+1}}_{n+1,m}\) in \(C([0,T];L^2)\). In what follows, we show that \(u_{n+1,m}\) is adapted to \((\mathcal {F}_t)\). In fact, let \(f_j,\,j\in {\mathbb {N}}\), be an orthonormal basis of \(L^2\). We have, for each \(a>0,\,\{|\left<u_{n+1,m}(t),f_j\right>_2|<a\}=J_{1,a}\cup J_{2,a}\), where \(J_{1,a}=\{|\left<y_n(t),f_j\right>_2|<a,\, t\le \tau _n\}\) and \(J_{2,a}=\{|\left<v_{n+1,m}(t-\tau _n),f_j\right>_2|<a,\, \tau _n< t\}\). Since \(y_n\) is adapted to \((\mathcal {F}_t)\) and \(\tau _n\) is an \((\mathcal {F}_t)\) stopping time, it follows that \(J_{1,a}\in \mathcal {F}_t\).

By the continuity of \(t\mapsto |\left<v_{n+1,m}(t-\tau _n),f_j\right>_2|\), we see that

$$\begin{aligned} J_{2,a}=\bigcup _{^{q\in Q}_{q<a}}\bigcup _{h\in {\mathbb {N}}}\bigcap _{s\in Q}J_{q,h,s}, \end{aligned}$$

where \(J_{q,h,s}=\left\{ |\left<v_{n+1,m}(s),f_j\right>_2|<q,\ t-\tau _n- \frac{1}{h}<s<t-\tau _n,\tau _n<t\right\} \).

Taking into account that \(\{|\left<v_{n+1,m}(s),f_j\right>_2|<q\}\in \mathcal {F}_{\tau _n+s}\) and \(\tau _n+s<t\), we have \(J_{q,h,s}\in \mathcal {F}_t\), which implies that \(J_{2,a}\in \mathcal {F}_t\).

Collecting the preceding results, we obtain that, for any \(j\in {\mathbb {N}}\) and \(a>0\), \(\{|\left<u_{n+1,m}(t),f_j\right>_2|<a\}\in \mathcal {F}_t\). This is enough to imply that \(u_{n+1,m}\) is adapted to \((\mathcal {F}_t)\). Therefore, as the limit of \(u^{\tau _{n+1}}_{n+1,m},\,y_{n+1}\) is also adapted to \((\mathcal {F}_t)\). This completes the proof. \(\square \)

Note Added in Proof

After this paper was in print we learned by the work of A. de Bouard and R. Fukuitumi: Representation formula for Stochastic Schrödinger equation and applications, Nonlinearity, 25, 2993–3022 (2012) where a similar rescaling method is used without however a large overlap with present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbu, V., Röckner, M. & Zhang, D. Stochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach. J Nonlinear Sci 24, 383–409 (2014). https://doi.org/10.1007/s00332-014-9193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9193-x

Keywords

Mathematics Subject Classification

Navigation