Skip to main content
Log in

Generalizing the Keller–Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow-Up Results for Multi-species Chemotaxis Models in the Presence of Attraction and Repulsion Between Competitive Interacting Species

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper we extend the famous Keller–Segel model for the chemotactic movement of motile species to some multi-species chemotaxis equations. The presented multi-species chemotaxis models are more general than those introduced so far and also include some interaction effects that have not been studied before. For example, we consider multi-species chemotaxis models with attraction and repulsion between interacting motile species. For some of the presented new models we give sufficient conditions for the existence of Lyapunov functionals. These new results are related to those of Wolansky (Scent and sensitivity: equilibria and stability of chemotactic systems in the absence of conflicts, preprint, 1998; Eur. J. Appl. Math. 13:641–661, 2002). Furthermore, a linear stability analysis is performed for uniform steady states, and results for the corresponding steady state problems are established. These include existence and nonexistence results for non-constant steady state solutions in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, J., Tso, W.-W.: Decision making in bacteria: chemotactic response of Escherichia coli to conflict stimuli. Science 184, 1292 (1974)

    Article  Google Scholar 

  • Alt, W.: Vergleichssätze für Quasilineare Elliptisch-Parabolische Systems Partieller Differentialgleichungen. Habilitation. Ruprecht-Karl-Universität, Heidelberg (1980)

    Google Scholar 

  • Boon, J.-P., Herpigny, B.: Model for chemotactic bacterial bands. Bull. Math. Biol. 48, 1–19 (1986)

    MATH  Google Scholar 

  • Burger, M., Di Francesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. Preprint, Universität Münster, January 2010

  • Espejo Arenas, E.E., Stevens, A., Velázquez, J.J.L.: Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis 29, 317–338 (2009)

    Article  MATH  Google Scholar 

  • Fasano, A., Mancini, A., Primicerio, M.: Equilibrium of two populations subjected to chemotaxis. Math. Models Methods Appl. Sci. 14, 503–533 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Feireisl, E., Laurençot, P., Petzeltová, H.: On convergence to equilibria for the Keller–Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2007)

    Article  MATH  Google Scholar 

  • Frymier, P.D., Ford, R.M., Cummings, P.T.: Cellular dynamics simulations of bacterial chemotaxis. Chem. Eng. Sci. 48, 687–699 (1993)

    Article  Google Scholar 

  • Frymier, P.D., Ford, R.M., Cummings, P.T.: Analysis of bacterial migration: I. Numerical solution of balance equation. AIChE J. 40, 704–715 (1994)

    Article  Google Scholar 

  • Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Homma, M., Oota, H., Kojima, S., Kawagishi, I., Imae, Y.: Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142, 2777–2783 (1996)

    Article  Google Scholar 

  • Horstmann, D.: Lyapunov functions and L p-estimates for a class of reaction-diffusion systems. Colloq. Math. 87, 113–127 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  • Horstmann, D., Lucia, M.: Nonlocal elliptic boundary value problems related to chemotactic movement of mobile species. RIMS Kôkyûroku Bessatsu B 15, 39–72 (2009)

    MathSciNet  Google Scholar 

  • Horstmann, D., Stevens, A.: A constructive approach to traveling waves in chemotaxis. J. Nonlinear Sci. 14, 1–25 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  • Kelly, F.X., Dapsis, K., Lauffenburger, D.A.: Effects of bacterial chemotaxis on dynamics of microbial competition. Microb. Ecol. 16, 115–131 (1988)

    Article  Google Scholar 

  • Kuiper, H.J.: A priori bounds and global existence for a strongly coupled quasilinear parabolic system modeling chemotaxis. Electron. J. Differ. Equ. 2001, 1–18 (2001), electronic only

    MathSciNet  Google Scholar 

  • Kurokiba, M., Ogawa, T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Differ. Integral Equ. 16, 427–452 (2003)

    MATH  MathSciNet  Google Scholar 

  • Lauffenburger, D.A.: Quantitative studies of bacterial chemotaxis and microbial population dynamics. Microb. Ecol. 22, 175–185 (1991)

    Article  Google Scholar 

  • Lauffenburger, D.A., Calcagno, B.: Competition between two microbial populations in a non-mixed environment: effect of cell random motility. Biotech. Bioeng. 25, 2103–2125 (1983)

    Article  Google Scholar 

  • Lauffenburger, D.A., Aris, R., Keller, K.: Effects of cell motility and chemotaxis on microbial population growth. Biophys. J. 40, 209–219 (1982)

    Article  Google Scholar 

  • Le, D., Smith, H.L.: Steady states of models of microbial growth and competition with chemotaxis. J. Math. Anal. Appl. 229, 295–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Le, D.: Coexistence with chemotaxis. SIAM J. Math. Anal. 32, 504–521 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Matsuura, T., Oikawa, T., Wakabayashi, T., Shingai, R.: Effect of simultaneous presentation of multiple attractants on chemotactic response of nematode Caenorhabditis elegans. Neurosci. Res. 48, 419–429 (2004)

    Article  Google Scholar 

  • Nagai, T., Senba, T., Yoshida, K.: Application of the Moser–Trudinger inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40, 411–433 (1997)

    MATH  MathSciNet  Google Scholar 

  • Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MATH  MathSciNet  Google Scholar 

  • Pearce, I.G., Chaplain, M.A.J., Schofield, P.G., Anderson, A.R.A., Hubbard, S.F.: Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55, 365–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Post, K.: A non-linear parabolic system modeling chemotaxis with sensitivity functions. Dissertation, Humboldt-Universität zu Berlin, Institut für Mathematik (1999)

  • Senba, T., Suzuki, T.: Local and norm behavior of blowup solutions to a parabolic system of chemotaxis. J. Korean Math. Soc. 37, 929–941 (2000)

    MATH  MathSciNet  Google Scholar 

  • Schaaf, R.: Stationary solutions of chemotaxis systems. Trans. Am. Math. Soc. 292, 531–556 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Strauss, I., Frymier, P.D., Ford, R.M., Cummings, P.T.: Analysis of bacterial migration: II. Studies with multiple attractant gradients. AIChE J. 41, 402–414 (1995)

    Article  Google Scholar 

  • Struwe, M., Tarantello, G.: On multivortex solutions in Chern–Simons Gauge theory. Boll. Unione Mat. Ital. B (8) 1, 109–121 (1998)

    MATH  MathSciNet  Google Scholar 

  • Tang, X., Tao, Y.: Analysis of a chemotaxis model for multi-species host-parasitoid interactions. Appl. Math. Sci. 2, 1239–1252 (2008)

    MATH  MathSciNet  Google Scholar 

  • Tsang, N., Macnab, R., Koshland, J.: Common mechanism for repellents and attractants in bacterial chemotaxis. Science 181, 60 (1973)

    Article  Google Scholar 

  • Weijer, C.: Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14, 392–398 (2004)

    Article  Google Scholar 

  • Wolansky, G.: Scent and sensitivity: equilibria and stability of chemotactic systems in the absence of conflicts. Preprint (1998)

  • Wolansky, G.: Multi-components chemotactic system in absence of conflicts. Eur. J. Appl. Math. 13, 641–661 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Horstmann.

Additional information

Communicated by P.K. Maini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horstmann, D. Generalizing the Keller–Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow-Up Results for Multi-species Chemotaxis Models in the Presence of Attraction and Repulsion Between Competitive Interacting Species. J Nonlinear Sci 21, 231–270 (2011). https://doi.org/10.1007/s00332-010-9082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9082-x

Keywords

Mathematics Subject Classification (2000)

Navigation