Skip to main content
Log in

Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component ‘cold-gas’ hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the ‘cold-gas’ component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arik, M., Neyzi, F., Nutku, Ya., Olver, P.: Multi-Hamiltonian structure of the Born–Infeld equation. J. Math. Phys. 30, 1338–1344 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Belokolos, E.D.: Kinetic equations and integrable Hamiltonian systems. Ukr. Math. J. 57, 869–882 (2005)

    Article  MathSciNet  Google Scholar 

  • Benney, D.J.: Some properties of long nonlinear waves. Stud. Appl. Math. 52, 45–50 (1973)

    MATH  Google Scholar 

  • Born, M., Infeld, L.: Foundations of a new field theory. Proc. R. Soc. A 144, 425–451 (1934)

    Article  MATH  Google Scholar 

  • Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44, 35–124 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • El, G.A.: The thermodynamic limit of the Whitham equations. Phys. Lett. A 311, 374–383 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • El, G.A., Kamchatnov, A.M.: Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95, 204101 (2005)

    Article  Google Scholar 

  • El, G.A., Krylov, A.L., Molchanov, S.A., Venakides, S.: Soliton turbulence as the thermodynamic limit of stochastic soliton lattices. Physica D 152–153, 653–664 (2001a). Advances in Nonlinear Mathematics and Science

    Article  MathSciNet  Google Scholar 

  • El, G.A., Krylov, A.L., Venakides, S.: Unified approach to KdV modulations. Commun. Pure Appl. Math. 54, 1243–1270 (2001b)

    Article  MATH  MathSciNet  Google Scholar 

  • Darboux, G.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Paris (1910)

  • Ferapontov, E.V.: Integration of weakly-nonlinear hydrodynamic systems in Riemann invariants. Phys. Lett. A 158, 112–118 (1991)

    Article  MathSciNet  Google Scholar 

  • Ferapontov, E.V., Khusnutdinova, K.R.: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004a)

    Article  MATH  MathSciNet  Google Scholar 

  • Ferapontov, E.V., Khusnutdinova, K.R.: The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type. J. Phys. A, Math. Gen 37, 2949–2963 (2004b)

    Article  MATH  MathSciNet  Google Scholar 

  • Ferapontov, E.V., Marshall, D.G.: Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor. Math. Ann. 339, 61–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Flaschka, H., Forest, G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solutions of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 33, 739–784 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher, F.R.: Applications of the Theory of Matrices. Interscience, New York (1959)

    MATH  Google Scholar 

  • Gibbons, J.: Collisionless Boltzmann equations and integrable moment equations. Physica D 3, 503–511 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Gibbons, J., Kodama, Y.: Solving dispersionless Lax equations. In: Ercolani, N., et al. (eds.) Singular Limits of Dispersive Waves. NATO ASI Series B, vol. 320, p. 61. Plenum, New York (1994)

    Google Scholar 

  • Gibbons, J., Raimondo, A.: Differential geometry of hydrodynamic Vlasov equations. J. Geom. Phys. 57, 1815–1828 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gibbons, J., Tsarev, S.P.: Reductions of Benney’s equations. Phys. Lett. A 211, 19–24 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Gibbons, J., Tsarev, S.P.: Conformal maps and reductions of the Benney equations. Phys. Lett. A 258, 263–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Grava, T., Tian, F.-R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun. Pure Appl. Math. 55, 1569–1639 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Gurevich, A.V., Mazur, N.G., Zybin, K.P.: Statistical limit in a completely integrable system with deterministic initial conditions. J. Exp. Theor. Phys. 90, 797–817 (2000)

    MathSciNet  Google Scholar 

  • Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Krichever, I.M.: The averaging method for two-dimensional “integrable” equations. Funct. Anal. Appl. 22, 200–213 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surv. 44, 145–225 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Kodama, Y.: A method for solving the dispersionless KP equation and its exact solutions. Phys. Lett. A 129, 223–226 (1988a)

    Article  MathSciNet  Google Scholar 

  • Kodama, Y.: A solution method for the dispersionless KP equation. Prog. Theor. Phys. Suppl. 94, 184 (1988b)

    Article  MathSciNet  Google Scholar 

  • Kotani, S.: KdV flow on generalized reflectionless potentials. J. Math. Phys. Anal. Geom. 4, 490–528 (2008)

    MATH  MathSciNet  Google Scholar 

  • Lax, P.D.: The zero dispersion limit, a deterministic analog of turbulence. Commun. Pure Appl. Math. 44, 1047–1056 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation I. Commun. Pure Appl. Math. 36, 253–290 (1983a)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation II. Commun. Pure Appl. Math. 36, 571–593 (1983b)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation III. Commun. Pure Appl. Math. 36, 809–829 (1983c)

    Article  MATH  MathSciNet  Google Scholar 

  • Levermore, C.D.: The hyperbolic nature of the zero dispersion KdV limit. Commun. Partial. Differ. Equ. 13, 495–514 (1988)

    MATH  MathSciNet  Google Scholar 

  • Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: The Theory of Solitons: The Inverse Scattering Method. Consultants, New York (1984)

    Google Scholar 

  • Odesskii, A.V., Pavlov, M.V., Sokolov, V.V.: Classification of integrable Vlasov-like equations. Theor. Math. Phys. 154, 248–259 (2008)

    Article  MathSciNet  Google Scholar 

  • Pavlov, M.V.: Hamiltonian formalism of weakly nonlinear systems in hydrodynamics. Theor. Math. Phys. 73, 1242–1245 (1987)

    Article  MATH  Google Scholar 

  • Pavlov, M.V.: Algebro-geometric approach in the theory of integrable hydrodynamic type systems. Commun. Math. Phys. 272, 469–505 (2007)

    Article  MATH  Google Scholar 

  • Pavlov, M.V., Tsarev, S.P.: Three-Hamiltonian structures of the Egorov hydrodynamic type systems. Funct. Anal. Appl. 37(1), 32–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Pavlov, M.V., Svinolupov, R.A., Sharipov, S.I.: Invariant integrability criterion for equations of hydrodynamic type. Funct. Anal. Appl. 30, 15–22 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsarev, S.P.: On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl. 31, 488–491 (1985)

    MATH  Google Scholar 

  • Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izv. 37, 397–419 (1991)

    Article  MathSciNet  Google Scholar 

  • Weinstein, M.I., Keller, J.B.: Asymptotic behavior of stability regions for Hill’s equation. SIAM J. Appl. Math. 47, 941–958 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  • Venakides, S.: The Zero Dispersion Limit of the Korteweg–de Vries Equation with Periodic Initial Data. AMS Transactions, vol. 301, pp. 189–226 (1987)

  • Venakides, S.: The continuum limit of theta functions. Commun. Pure Appl. Math. 42, 711 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Venakides, S.: The Korteweg–de Vries equation with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Zakharov, V.E.: Kinetic equation for solitons. Sov. Phys. JETP 33, 538–541 (1971)

    Google Scholar 

  • Zakharov, V.E.: On the Benney equations. Physica D 3, 193–202 (1981)

    Article  MATH  Google Scholar 

  • Zakharov, V.E.: Dispersionless limit of integrable systems in 2+1 dimensions. In: Ercolani, N.M., et al. (eds.) Singular Limits of Dispersive Waves, pp. 165–174. Plenum, New York (1994)

    Google Scholar 

  • Zakharov, V.E.: Turbulence in integrable systems. Stud. Appl. Math. 122, 219–234 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. El.

Additional information

Communicated by T. Fokas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El, G.A., Kamchatnov, A.M., Pavlov, M.V. et al. Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions. J Nonlinear Sci 21, 151–191 (2011). https://doi.org/10.1007/s00332-010-9080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9080-z

Keywords

Mathematics Subject Classification (2000)

Navigation