Skip to main content

Advertisement

Log in

Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study

  • Imaging Informatics and Artificial Intelligence
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Edema is a complication of gamma knife radiosurgery (GKS) in meningioma patients that leads to a variety of consequences. The aim of this study is to construct radiomics-based machine learning models to predict post-GKS edema development.

Methods

In total, 445 meningioma patients who underwent GKS in our institution were enrolled and partitioned into training and internal validation datasets (8:2). A total of 150 cases from multicenter data were included as the external validation dataset. In each case, 1132 radiomics features were extracted from each pre-treatment MRI sequence (contrast-enhanced T1WI, T2WI, and ADC maps). Nine clinical features and eight semantic features were also generated. Nineteen random survival forest (RSF) and nineteen neural network (DeepSurv) models with different combinations of radiomics, clinical, and semantic features were developed with the training dataset, and evaluated with internal and external validation. A nomogram was derived from the model achieving the highest C-index in external validation.

Results

All the models were successfully validated on both validation datasets. The RSF model incorporating clinical, semantic, and ADC radiomics features achieved the best performance with a C-index of 0.861 (95% CI: 0.748–0.975) in internal validation, and 0.780 (95% CI: 0.673–0.887) in external validation. It stratifies high-risk and low-risk cases effectively. The nomogram based on the predicted risks provided personalized prediction with a C-index of 0.962 (95%CI: 0.951–0.973) and satisfactory calibration.

Conclusion

This RSF model with a nomogram could represent a non-invasive and cost-effective tool to predict post-GKS edema risk, thus facilitating personalized decision-making in meningioma treatment.

Clinical relevance statement

The RSF model with a nomogram built in this study represents a handy, non-invasive, and cost-effective tool for meningioma patients to assist in better counselling on the risks, appropriate individual treatment decisions, and customized follow-up plans.

Key Points

Machine learning models were built to predict post-GKS edema in meningioma. The random survival forest model with clinical, semantic, and ADC radiomics features achieved excellent performance.

The nomogram based on the predicted risks provides personalized prediction with a C-index of 0.962 (95%CI: 0.951–0.973) and satisfactory calibration and shows the potential to assist in better counselling, appropriate treatment decisions, and customized follow-up plans.

Given the excellent performance and convenient acquisition of the conventional sequence, we envision that this non-invasive and cost-effective tool will facilitate personalized medicine in meningioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CE-T1WI:

Contrast-enhanced T1-weighted image

CI:

Confidence interval

CPH:

Cox proportional hazards

DWI:

Diffusion-weighted Imaging

EANO:

European Association of Neuro-Oncology

GKS:

Gamma knife radiosurgery

GND:

Greenwood-Nam-D’Agostino

ICC:

Intraclass/interclass correlation coefficient

IRB:

Institutional review board

ML:

Machine learning

OOB:

Out-of-bag

RANO:

Response Assessment in Neuro-Oncology

RSF:

Random survival forest

SRS:

Stereotactic radiosurgery

T2WI:

T2-weighted image

VEGF:

Vascular endothelial growth factor

VOI:

Volume of interest

VPF:

Vascular permeability factor

References

  1. Kim J-H, Gwak H-S, Hong EK, Bang CW, Lee SH, Yoo H (2015) A case of benign meningioma presented with subdural hemorrhage. Brain Tumor Res Treat. https://doi.org/10.14791/btrt.2015.3.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang JH, Chang JW, Choi JY, Park YG, Chung SS (2003) Complications after gamma knife radiosurgery for benign meningiomas. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp.74.2.226

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oermann EK, Bhandari R, Chen VJ et al (2013) Five fraction image-guided radiosurgery for primary and recurrent meningiomas. Front Oncol. https://doi.org/10.3389/fonc.2013.00213

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liščák R, Kollová A, Vladyka V, Šimonová G, Novotný J (2004) Gamma knife radiosurgery of skull base meningiomas. Acta Neurochir Suppl. https://doi.org/10.1007/978-3-7091-0583-2_7

    Article  PubMed  Google Scholar 

  5. Hoe Y, Choi YJ, Kim JH, Kwon DH, Kim CJ, Cho YH (2015) Peritumoral brain edema after stereotactic radiosurgery for asymptomatic intracranial meningiomas : risks and pattern of evolution. J Korean Neurosurg Soc. https://doi.org/10.3340/jkns.2015.58.4.379

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kondziolka D, Patel AD, Kano H, Flickinger JC, Lunsford LD (2016) Long-term outcomes after gamma knife radiosurgery for meningiomas. Am J Clin Oncol. https://doi.org/10.1097/COC.0000000000000080

    Article  Google Scholar 

  7. Sheehan J, Pikis S, Islim A et al (2021) An international multicenter matched cohort analysis of incidental meningioma progression during active surveillance or after stereotactic radiosurgery: the IMPASSE Study. Neuro Oncol. https://doi.org/10.1093/neuonc/noab132

    Article  PubMed Central  Google Scholar 

  8. Milano MT, Sharma M, Soltys SG et al (2018) Radiation-induced edema after single-fraction or multifraction stereotactic radiosurgery for meningioma: a critical review. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2018.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sheehan JP, Cohen-Inbar O, Ruangkanchanasetr R et al (2015) Post-radiosurgical edema associated with parasagittal and parafalcine meningiomas: a multicenter study. J Neurooncol. https://doi.org/10.1007/s11060-015-1911-1

    Article  PubMed  Google Scholar 

  10. Novotný J, Kollová A, Liscák R (2006) Prediction of intracranial edema after radiosurgery of meningiomas. J Neurosurg. https://doi.org/10.3171/sup.2006.105.7.120

    Article  PubMed  Google Scholar 

  11. Han M-S, Jang W-Y, Moon K-S et al (2017) Is fractionated gamma knife radiosurgery a safe and effective treatment approach for large-volume (>10 cm(3)) intracranial meningiomas? World Neurosurg. https://doi.org/10.1016/j.wneu.2016.12.056

    Article  PubMed  Google Scholar 

  12. Cai R, Barnett GH, Novak E, Chao ST, Suh JH (2016) Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumor-brain contact interface area. Neurosurgery. https://doi.org/10.1227/01.NEU.0000365366.53337.88

    Article  PubMed  Google Scholar 

  13. Unger KR, Lominska CE, Chanyasulkit J et al (2012) Risk factors for posttreatment edema in patients treated with stereotactic radiosurgery for meningiomas. Neurosurgery. https://doi.org/10.1227/neu.0b013e3182351ae7

    Article  PubMed  Google Scholar 

  14. Cai R, Barnett GH, Novak E, Chao ST, Suh JH (2010) Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumor-brain contact interface area. Neurosurgery. https://doi.org/10.1227/01.NEU.0000365366.53337.88

    Article  PubMed  Google Scholar 

  15. Girvigian MR, Chen JCT, Rahimian J, Miller MJ, Tome M (2008) Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery. https://doi.org/10.1227/01.neu.0000325933.34154.cb

    Article  PubMed  Google Scholar 

  16. Hadelsberg U, Nissim U, Cohen ZR, Spiegelmann R (2015) LINAC radiosurgery in the management of parasagittal meningiomas. Stereotact Funct Neurosurg. https://doi.org/10.1159/000368440

    Article  PubMed  Google Scholar 

  17. Zada G, Pagnini PG, Yu C et al (2010) Long-term outcomes and patterns of tumor progression after gamma knife radiosurgery for benign meningiomas. Neurosurgery. https://doi.org/10.1227/01.NEU.0000371974.88873.15

    Article  PubMed  Google Scholar 

  18. Conti A, Pontoriero A, Siddi F et al (2016) Post-treatment edema after meningioma radiosurgery is a predictable complication. Cureus. https://doi.org/10.7759/cureus.605

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Connor KP, Algan O, Vesely SK et al (2019) Factors associated with treatment failure and radiosurgery-related edema in WHO grade 1 and 2 meningioma patients receiving gamma knife radiosurgery. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.06.152

    Article  PubMed  Google Scholar 

  20. Akai H, Yasaka K, Kunimatsu A et al (2018) Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging. https://doi.org/10.1016/j.diii.2018.05.008

    Article  PubMed  Google Scholar 

  21. Ingrisch M, Schneider MJ, Nörenberg D et al (2017) Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000349

    Article  PubMed  Google Scholar 

  22. Hamidi O, Poorolajal J, Farhadian M, Tapak L (2016) Identifying important risk factors for survival in kidney graft failure patients using random survival forests. Iran J Public Health 45:27–33

    PubMed  PubMed Central  Google Scholar 

  23. Wang H, Li G (2017) A selective review on random survival forests for high dimensional data. Quant Bio-Science. https://doi.org/10.22283/qbs.2017.36.2.85

    Article  Google Scholar 

  24. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y (2018) DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. https://doi.org/10.1186/s12874-018-0482-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bice N, Kirby N, Bahr T et al (2020) Deep learning-based survival analysis for brain metastasis patients with the national cancer database. J Appl Clin Med Phys. https://doi.org/10.1002/acm2.12995

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cao J, Lan S, Shen L et al (2017) Hemoglobin level, a prognostic factor for nasal extranodal natural killer/T-cell lymphoma patients from stage I to IV: a validated prognostic nomogram. Sci Rep. https://doi.org/10.1038/s41598-017-11137-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tapak L, Sheikh V, Jenabi E, Khazaei S (2020) Predictors of mortality among hemodialysis patients in hamadan province using random survival forests. J Prev Med Hyg. https://doi.org/10.15167/2421-4248/jpmh2020.61.3.1421

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang RY, Bi WL, Weller M et al (2019) Proposed response assessment and endpoints for meningioma clinical trials: report from the Response Assessment in Neuro-Oncology Working Group. Neuro Oncol. https://doi.org/10.1093/neuonc/noy137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  30. Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: Improving survival prediction. Radiology. https://doi.org/10.1148/radiol.2018180200

    Article  PubMed  Google Scholar 

  31. Goldbrunner R, Minniti G, Preusser M et al (2016) EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. https://doi.org/10.1016/S1470-2045(16)30321-7

    Article  PubMed  Google Scholar 

  32. Bitzer M, Klose U, Geist-Barth B et al (2002) Alterations in diffusion and perfusion in the pathogenesis of peritumoral brain edema in meningiomas. Eur Radiol 12:2062–2076. https://doi.org/10.1007/s003300101025

  33. Kollová A, Liščák R, Novotný J, Vladyka V, Šimonová G, Janoušková L (2007) Gamma Knife surgery for benign meningioma. J Neurosurg. https://doi.org/10.3171/JNS-07/08/0325

    Article  PubMed  Google Scholar 

  34. Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE (2019) Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2019.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  35. Peters A (2002) The effects of normal aging on myelin and nerve fibers: A review. J Neurocytol. https://doi.org/10.1023/A:1025731309829

    Article  PubMed  Google Scholar 

  36. Fatima Z, Motosugi U, Hori M et al (2013) Age-related white matter changes in high b-value q-space diffusion-weighted imaging. Neuroradiology. https://doi.org/10.1007/s00234-012-1099-4

    Article  PubMed  Google Scholar 

  37. Toh CH, Castillo M (2021) Peritumoral brain edema volume in meningioma correlates with tumor fractional anisotropy but not apparent diffusion coefficient or cerebral blood volume. Neuroradiology 63:1263–1270. https://doi.org/10.1007/s00234-021-02646-6

  38. Bologna M, Calareso G, Resteghini C et al (2020) Relevance of apparent diffusion coefficient features for a radiomics-based prediction of response to induction chemotherapy in sinonasal cancer. NMR Biomed. https://doi.org/10.1002/nbm.4265

    Article  PubMed  Google Scholar 

  39. Lu Y, Liu L, Luan S, Xiong J, Geng D, Yin B (2019) The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest. Eur Radiol. https://doi.org/10.1007/s00330-018-5632-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yin B, Liu L, Zhang BY, Li YX, Li Y, Geng D (2012) Correlating apparent diffusion coefficients with histopathologic findings on meningiomas. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2012.06.002

    Article  PubMed  Google Scholar 

  41. Liu L, Yin B, Geng D, Li Y, Zhang B, Peng W (2014) Comparison of ADC values of intracranial hemangiopericytomas and angiomatous and anaplastic meningiomas. J Neuroradiol 41:188–194. https://doi.org/10.1016/j.neurad.2013.07.002

  42. Zhang T, Yu JM, Wang YQ, Yin DD, Fang LJ (2018) WHO grade I meningioma subtypes: MRI features and pathological analysis. Life Sci. https://doi.org/10.1016/j.lfs.2018.08.061

  43. Nagar VA, Ye JR, Ng WH et al (2008) Diffusion-weighted MR imaging: Diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A0996

    Article  PubMed  PubMed Central  Google Scholar 

  44. Elshafeey N, Kotrotsou A, Hassan A et al (2019) Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun. https://doi.org/10.1038/s41467-019-11007-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Osawa T, Tosaka M, Nagaishi M, Yoshimoto Y (2013) Factors affecting peritumoral brain edema in meningioma: special histological subtypes with prominently extensive edema. J Neurooncol. https://doi.org/10.1007/s11060-012-0989-y

    Article  PubMed  Google Scholar 

  46. Kan P, Liu JK, Wendland MM, Shrieve D, Jensen RL (2007) Peritumoral edema after stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development. J Neurooncol. https://doi.org/10.1007/s11060-006-9294-y

    Article  PubMed  Google Scholar 

  47. Iwado E, Ichikawa T, Kosaka H et al (2012) Role of VEGF and matrix metalloproteinase-9 in peritumoral brain edema associated with supratentorial benign meningiomas. Neuropathology. https://doi.org/10.1111/j.1440-1789.2012.01312.x

    Article  PubMed  Google Scholar 

  48. Provias J, Claffey K, Lau N, Feldkamp M, Guha A (1997) Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery. https://doi.org/10.1097/0006123-199705000-00027

    Article  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Clinical Research Plan of SHDC (Grant No. SHDC2020CR4069), the Medical Engineering Fund of Fudan University(Grant No. yg2021-029), the Shanghai Sailing Program (Grant No. 21YF1404800), the Youth Program of Special Project for Clinical Research of Shanghai Municipal Health Commission Health industry (Grant No. 20204Y0421), the Youth Medical Talents –Medical Imaging Practitioner Program (No.3030256001), the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain-Inspired Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tonggang Yu or Bo Yin.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Bo Yin.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Weiwei Zheng, School of Public Health, Fudan University) has significant statistical expertise.

Informed consent

Approval from the institutional review board (IRB) was obtained, and written informed consent was waived.

Ethical approval

Approval from the institutional review board (IRB) was obtained, and written informed consent was waived.

Study subjects or cohorts overlap

Study subjects or cohorts have never been previously reported.

Methodology

• retrospective

• diagnostic or prognostic study

• multicenter study

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 983 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lu, Y., Liu, L. et al. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study. Eur Radiol 33, 8912–8924 (2023). https://doi.org/10.1007/s00330-023-09955-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09955-9

Keywords

Navigation