Skip to main content
Log in

Risk factors analysis according to regional distribution of white matter hyperintensities in a stroke cohort

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The spectrum of distribution of white matter hyperintensities (WMH) may reflect different functional, histopathological, and etiological features. We examined the relationships between cerebrovascular risk factors (CVRF) and different patterns of WMH in MRI using a qualitative visual scale in ischemic stroke (IS) patients.

Methods

We assembled clinical data and imaging findings from patients of two independent cohorts with recent IS. MRI scans were evaluated using a modified visual scale from Fazekas, Wahlund, and Van Swieten. WMH distributions were analyzed separately in periventricular (PV-WMH) and deep (D-WMH) white matter, basal ganglia (BG-WMH), and brainstem (B-WMH). Presence of confluence of PV-WMH and D-WMH and anterior-versus-posterior WMH predominance were also evaluated. Statistical analysis was performed with SPSS software.

Results

We included 618 patients, with a mean age of 72 years (standard deviation [SD] 11 years). The most frequent WMH pattern was D-WMH (73%). In a multivariable analysis, hypertension was associated with PV-WMH (odds ratio [OR] 1.79, 95% confidence interval [CI] 1.29–2.50, p = 0.001) and BG-WMH (OR 2.13, 95% CI 1.19–3.83, p = 0.012). Diabetes mellitus was significantly related to PV-WMH (OR 1.69, 95% CI 1.24–2.30, p = 0.001), D-WMH (OR 1.46, 95% CI 1.07–1.49, p = 0.017), and confluence patterns of D-WMH and PV-WMH (OR 1.62, 95% CI 1.07–2.47, p = 0.024). Hyperlipidemia was found to be independently related to brainstem distribution (OR 1.70, 95% CI 1.08–2.69, p = 0.022).

Conclusions

Different CVRF profiles were significantly related to specific WMH spatial distribution patterns in a large IS cohort.

Key Points

• An observational study of WMH in a large IS cohort was assessed by a modified visual evaluation.

• Different CVRF profiles were significantly related to specific WMH spatial distribution patterns.

• Distinct WMH anatomical patterns could be related to different pathophysiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

BG-WMH:

Basal ganglia white matter hyperintensities

BMI:

Body mass index

B-WMH:

Brainstem white matter hyperintensities

CAD:

Coronary artery disease

CI:

Confidence interval

CVRF:

Cerebrovascular risk factors

D-WMH:

Deep white matter hyperintensities

FLAIR:

Fluid attenuated inversion recovery

IQR:

Interquartile range

IS:

Ischemic stroke

OR:

Odds ratio

PV-WMH:

Periventricular white matter hyperintensities

SVD:

Small vessel disease

TIA:

Transient ischemic attack

WMH:

White matter hyperintensities

References

  1. Wardlaw JM, Smith EE, Biessels GJ et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Leeuw F-E, Richard F, de Groot JC et al (2004) Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke. 35(5):1057–1060

    Article  PubMed  Google Scholar 

  3. Charidimou A, Boulouis G, Haley K et al (2016) White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 86(6):505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dufouil C, de Kersaint-Gilly A, Besançon V et al (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI cohort. Neurology. 56(7):921–926

    Article  CAS  PubMed  Google Scholar 

  5. Boyle PA, Yu L, Fleischman DA et al (2016) White matter hyperintensities, incident mild cognitive impairment, and cognitive decline in old age. Ann Clin Transl Neurol 3(10):791–800

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dufouil C, Godin O, Chalmers J et al (2009) Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. Stroke. 40(6):2219–2221

    Article  PubMed  Google Scholar 

  7. Bokura H, Kobayashi S, Yamaguchi S et al (2006) Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: a prospective cohort study. J Stroke Cerebrovasc Dis 15(2):57–63

    Article  PubMed  Google Scholar 

  8. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. https://doi.org/10.1136/bmj.c3666

  9. Schmidt R, Fazekas F, Kleinert G et al (1992) Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers. Arch Neurol 49(8):825–827

    Article  CAS  PubMed  Google Scholar 

  10. Fazekas F, Kleinert R, Offenbacher H et al (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 43(9):1683–1689

    Article  CAS  PubMed  Google Scholar 

  11. Pantoni L, Simoni M, Pracucci G, Schmidt R, Barkhof F, Inzitari D (2002) Visual rating scales for age-related white matter changes (leukoaraiosis): can the heterogeneity be reduced? Stroke. 33(12):2827–2833

    Article  PubMed  Google Scholar 

  12. van Swieten JC, Hijdra A, Koudstaal PJ, van Gijn J (1990) Grading white matter lesions on CT and MRI: a simple scale. J Neurol Neurosurg Psychiatry 53(12):1080–1083

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wahlund LO, Barkhof F, Fazekas F et al (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 32(6):1318–1322

    Article  CAS  PubMed  Google Scholar 

  14. Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke. 28(3):652–659

    Article  CAS  PubMed  Google Scholar 

  15. Zupan M. Chapter 7. Pathogenesis of leukoaraiosis : a review. In book: Microcirculation revisited - from molecules to clinical practice. IntechOpen; 2016. https://doi.org/10.5772/63655

  16. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701

    Article  PubMed  Google Scholar 

  17. Kim KW, Macfall JR, Payne ME (2008) Classification of white matter lesions on magnetic resonance imaging in the elderly. Biol Psychiatry 64(4):273–280

    Article  PubMed  PubMed Central  Google Scholar 

  18. Martí-Fàbregas J, Medrano-Martorell S, Merino E et al (2019) MRI predicts intracranial hemorrhage in patients who receive long-term oral anticoagulation. Neurology. 92(21):e2432–e2443

    Article  PubMed  PubMed Central  Google Scholar 

  19. Poirier J, Gray F, Cherardi R, Derouesné C (1985) Cerebral lacunae: a neuropathological classification. J Neuropathol Exp Neurol 44:312

    Article  Google Scholar 

  20. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ (2005) Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke. 36(1):50–55

    Article  PubMed  Google Scholar 

  21. Sachdev P, Wen W (2005) Should we distinguish between periventricular and deep white matter hyperintensities? Stroke. 36(11):2342–2344

    Article  PubMed  Google Scholar 

  22. Griffanti L, Jenkinson M, Suri S et al (2018) Classification and characterization of periventricular and deep white matter hyperintensities on MRI: a study in older adults. Neuroimage. 170:174–181

    Article  PubMed  Google Scholar 

  23. Gouw AA, van der Flier WM, van Straaten ECW et al (2008) Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc Dis 25(3):247–253

    Article  CAS  PubMed  Google Scholar 

  24. van den Heuvel DMJ, ten Dam VH, de Craen AJM et al (2006) Measuring longitudinal white matter changes: comparison of a visual rating scale with a volumetric measurement. AJNR Am J Neuroradiol 27(4):875–878

    PubMed  PubMed Central  Google Scholar 

  25. Ferguson KJ, Cvoro V, MacLullich AMJ et al (2018) Visual rating scales of white matter hyperintensities and atrophy: comparison of computed tomography and magnetic resonance imaging. J Stroke Cerebrovasc Dis 27(7):1815–1821

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kapeller P, Barber R, Vermeulen RJ et al (2003) Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke. 34(2):441–445

    Article  CAS  PubMed  Google Scholar 

  27. Wardlaw JM, Ferguson KJ, Graham C (2004) White matter hyperintensities and rating scales - observer reliability varies with lesion load. J Neurol 251(5):584–590

    Article  PubMed  Google Scholar 

  28. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW, Brain MR (1988) Pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 151(3):559–566

    Article  CAS  PubMed  Google Scholar 

  29. Lampe L, Kharabian-Masouleh S, Kynast J et al (2019) Lesion location matters: the relationships between white matter hyperintensities on cognition in the healthy elderly. J Cereb Blood Flow Metab 39(1):36–43

    Article  PubMed  Google Scholar 

  30. Longstreth WT, Arnold AM, Beauchamp NJ et al (2005) Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke. 36(1):56–61

    Article  PubMed  Google Scholar 

  31. de Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang CR, Cloonan L, Fitzpatrick KM et al (2015) Determinants of white matter hyperintensity burden differ at the extremes of ages of ischemic stroke onset. J Stroke Cerebrovasc Dis 24(3):649–654

    Article  CAS  PubMed  Google Scholar 

  33. Dufouil C, Chalmers J, Coskun O et al (2005) Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation. 112(11):1644–1650

    Article  PubMed  Google Scholar 

  34. Matsushita K, Kuriyama Y, Nagatsuka K, Nakamura M, Sawada T, Omae T (1994) Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension. 23(5):565–568

    Article  CAS  PubMed  Google Scholar 

  35. Wardlaw J, Smith C, Dichgans M (2013) Mechanisms underlying sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12(5):483–497

    Article  PubMed  Google Scholar 

  36. Shrestha I, Takahashi T, Nomura E et al (2009) Association between central systolic blood pressure, white matter lesions in cerebral MRI and carotid atherosclerosis. Hypertens Res 32(10):869–874

    Article  PubMed  Google Scholar 

  37. Blanco PJ, Müller LO, Spence JD (2017) Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2(3):108–117

    Article  PubMed  PubMed Central  Google Scholar 

  38. Armstrong NJ, Mather KA, Sargurupremraj M et al (2020) Common genetic variation indicates separate causes for periventricular and deep white matter hyperintensities. Stroke. 51:2111–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu W, Huang X, Liu X et al (2021) Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. Eur Radiol 31(4):2233–2241

    Article  PubMed  Google Scholar 

  40. Wen W, Sachdev PS (2004) Extent and distribution of white matter hyperintensities in stroke patients: the Sydney Stroke Study. Stroke. 35(12):2813–2819

    Article  PubMed  Google Scholar 

  41. Tamura Y, Araki A (2015) Diabetes mellitus and white matter hyperintensity. Geriatr Gerontol Int 15(Suppl 1):34–42

    Article  PubMed  Google Scholar 

  42. van Harten B, Oosterman JM (2007) Potter Van Loon BJ, Scheltens P, Weinstein HC. Brain lesions on MRI in elderly patients with type 2 diabetes mellitus. Eur Neurol 57(2):70–74

    Article  PubMed  Google Scholar 

  43. van Harten B, de Leeuw F-E, Weinstein HC, Scheltens P, Biessels GJ (2006) Brain imaging in patients with diabetes: a systematic review. Diabetes Care 29(11):2539–2548

    Article  PubMed  Google Scholar 

  44. Giese A-K, Schirmer MD, Dalca AV et al (2020) White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype. Neurology. 95(1):e79–e88

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology. 237(1):251–257

    Article  PubMed  Google Scholar 

  46. Mayasi Y, Helenius J, McManus D et al (2018) Atrial fibrillation is associated with anterior predominant white matter lesions in patients presenting with embolic stroke. J Neurol Neurosurg Psychiatry 89(1):6–13

    Article  PubMed  Google Scholar 

  47. Lee MJ, Moon S, Chung C-S (2019) White matter hyperintensities in migraine: a review. Precis Future Med 3(4):146–157

    Article  Google Scholar 

  48. Moody DM, Bell MA, Challa VR (1990) Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol 11(3):431–439

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hund-Georgiadis M, Ballaschke O, Scheid R, Norris DG, von Cramon DY (2002) Characterization of cerebral microangiopathy using 3 Tesla MRI: correlation with neurological impairment and vascular risk factors. J Magn Reson Imaging 15(1):1–7

    Article  PubMed  Google Scholar 

  50. Giralt-Steinhauer E, Medrano S, Soriano-Tárraga C et al (2018) Brainstem leukoaraiosis independently predicts poor outcome after ischemic stroke. Eur J Neurol 25(8):1086–1092

    Article  CAS  PubMed  Google Scholar 

  51. Aboyans V, Lacroix P, Criqui MH (2007) Large and small vessels atherosclerosis: similarities and differences. Prog Cardiovasc Dis 50(2):112–125

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

U Can Have It Translations provided English language assistance.

Funding

This study was supported in part by Spain’s Ministry of Health (Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III FEDER, RD12/0042/0020 INVICTUS-PLUS). HERO multicenter study was supported by Fondo de Investigaciones Sanitarias Instituto de Salud Carlos III (FI12/00296; RETICS INVICTUS PLUS RD16/0019/ 0010; FEDER) and an unrestricted grant from Bristol-Myers Squibb/Pfizer. The study is part of the Stroke Project, Cerebrovascular Diseases Study Group of the Spanish Neurological Society. Eva Giralt-Steinhauer received funding from Instituto de Salud Carlos III, with a Grant (JR18/00004). Carla Avellaneda received funding from Instituto de Salud Carlos III, with a Grant (CM18/00040). Isabel Fernandez received funding from Instituto de Salud Carlos III, with a Grant (CM/00003). Neither the funders nor the sponsor had any input into our study design; data collection, data analyses, and data interpretation; writing of the report; or the decision to submit the manuscript for publication. The corresponding author had full access to all data and had final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Medrano-Martorell.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Eva Giralt-Steinhauer.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Eva Giralt-Steinhauer kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported; the MRI of a total of 274 patients from the HERO study cohort were included. The results of this study were previously published: Martí-Fàbregas J, Medrano-Martorell S, Merino E, et al MRI predicts intracranial hemorrhage in patients who receive long-term oral anticoagulation. Neurology. 2019;92(21):e2432-e2443.

Methodology

• retrospective

• cross-sectional study

• multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano-Martorell, S., Capellades, J., Jiménez-Conde, J. et al. Risk factors analysis according to regional distribution of white matter hyperintensities in a stroke cohort. Eur Radiol 32, 272–280 (2022). https://doi.org/10.1007/s00330-021-08106-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08106-2

Keywords

Navigation