Skip to main content

Advertisement

Log in

Indication of the prognosis of pulmonary hypertension by using CMR function parameters

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to compare the cardiac function among different sub-types of pulmonary hypertension (PH) and to explore the independent predictors of major adverse cardiovascular events (MACE).

Methods

Eighty-seven PH patients diagnosed by right heart catheterization (RHC) were recruited. Patients underwent cardiac magnetic resonance (CMR) and RHC examination within 2 weeks. The CMR images were analyzed to calculate the cardiac functional parameters including right ventricle (RV) and left ventricle (LV) end-diastolic volume index (EDVI), end-systolic volume index (ESVI), stroke volume index (SVI), ejection fraction (EF), tricuspid annular plane systolic excursion (TAPSE), and myocardial mass (MM). The median follow-up time was 46.5 months (interquartile range: 26–65.5 months), and the endpoints were the occurrence of MACE.

Results

RVEDVI, LVEDVI, and LVESVI were higher in congenital heart disease–related PH (CHD-PH) than in other sub-types (p < 0.05). RVMM, RVSVI, and RVCI were highest in CHD-PH. There was no significant difference in the prognosis among different sub-types (p > 0.05). Comparing with the non-MACE group, RVEF, TAPSE, and LVSVI significantly decreased in the MACE group, while the RVESVI significantly increased (p < 0.05). TAPSE ≤ 15.65 mm and LVSVI ≤ 30.27 mL/m2 were significant independent predictors of prognosis in PH patients.

Conclusion

CHD-PH had a higher RV function reserve but lowest LVEF comparing to other subgroups. TAPSE and LVSVI could contribute to the prediction of MACE in PH patients.

Key Points

• CMR imaging is a noninvasive and accurate tool to assess ventricular function.

• CHD-PH had higher RV function reserve but lowest LVEF.

• TAPSE and LVSVI could contribute to the prediction of MACE in PH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BPA:

Balloon pulmonary angioplasty

BSA:

Body surface area

CHD:

Congenital heart disease

CI:

Cardiac index

CMR:

Cardiac magnetic resonance

CO:

Cardiac output

CTD:

Connective tissue disease

CTEPH:

Chronic thromboembolic pulmonary hypertension

dPAP:

Diastolic pulmonary arterial pressure

ECG:

Electrocardiogram

EDV:

End-diastolic volume

EDVI:

End-diastolic volume index

EF:

Ejection fraction

ESV:

End-systolic volume

ESVI:

End-systolic volume index

FIESTA:

Fast imaging employing steady-state acquisition

IPAH:

Idiopathic pulmonary arterial hypertension

IVS:

Interventricular septum

LV:

Left ventricle

LVSB:

Leftward ventricular septal bowing

MACE:

Major adverse cardiovascular events

MM:

Myocardial mass

MMI:

Myocardial mass index

MPA:

Main pulmonary artery

mPAP:

Mean pulmonary arterial pressure

MRI:

Magnetic resonance imaging

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary arterial pressure

PEA:

Pulmonary endarterectomy

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RCI:

Right cardiac index

RHC:

Right heart catheterization

ROC:

Receiver operating characteristic

RV:

Right ventricle

sPAP:

Systolic pulmonary arterial pressure

SV:

Stroke volume

SVI:

Stroke volume index

TAPSE:

Tricuspid annular plane systolic excursion

TTE:

Transthoracic echocardiography

WHO:

World Health Organization

References

  1. Aluja Jaramillo F, Gutierrez FR, Diaz Telli FG, Yevenes Aravena S, Javidan-Nejad C, Bhalla S (2018) Approach to pulmonary hypertension: from CT to clinical diagnosis. Radiographics 38:357–373

    Article  Google Scholar 

  2. Humbert M (2010) Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology. Eur Respir Rev 19:59–63

    Article  CAS  Google Scholar 

  3. Escribano-Subias P, Blanco I, López-Meseguer M et al (2012) Survival in pulmonary hypertension in Spain: insights from the Spanish registry. Eur Respir J 40:596–603

    Article  Google Scholar 

  4. Chung WJ, Park YB, Jeon CH et al (2015) Baseline characteristics of the Korean Registry of Pulmonary Arterial Hypertension. J Korean Med Sci 30:1429–1438

    Article  Google Scholar 

  5. Zhang Z, Wang M, Yang Z et al (2017) Noninvasive prediction of pulmonary artery pressure and vascular resistance by using cardiac magnetic resonance indices. Int J Cardiol 227:915–922

    Article  Google Scholar 

  6. Tedford RJ, Mudd JO, Girgis RE et al (2013) Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 6:953–963

    Article  CAS  Google Scholar 

  7. Overbeek MJ, Lankhaar JW, Westerhof N et al (2008) Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur Respir J 31:1160–1166

    Article  CAS  Google Scholar 

  8. van de Veerdonk MC, Kind T, Marcus JT et al (2011) Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 58:2511–2519

    Article  Google Scholar 

  9. Galie N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119

    Article  Google Scholar 

  10. Toro R, Cabeza-Letran ML, Quezada M, Rodriguez-Puras MJ, Mangas A (2016) Impaired right and left ventricular mechanics in adults with pulmonary hypertension and congenital shunts. J Cardiovasc Med 17:209–216

    Article  Google Scholar 

  11. Gabriels C, Lancellotti P, Van De Bruaene A et al (2015) Clinical significance of dynamic pulmonary vascular resistance in two populations at risk of pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging 16:564–570

    Article  Google Scholar 

  12. Pena E, Dennie C, Veinot J, Muniz SH (2012) Pulmonary hypertension: how the radiologist can help. Radiographics 32:9–32

    Article  Google Scholar 

  13. Johnson RC, Datar SA, Oishi PE et al (2014) Adaptive right ventricular performance in response to acutely increased afterload in a lamb model of congenital heart disease: evidence for enhanced Anrep effect. Am J Physiol Heart Circ Physiol 306:H1222–H1230

    Article  CAS  Google Scholar 

  14. Hopkins WE (2005) The remarkable right ventricle of patients with Eisenmenger syndrome. Coron Artery Dis 16:19–25

    Article  Google Scholar 

  15. Li JH, Zhang HD, Wang ZZ et al (2018) Acute iloprost inhalation improves right ventricle function in pulmonary artery hypertension: a cardiac magnetic resonance study. Front Pharmacol 9:1550

    Article  CAS  Google Scholar 

  16. Lambova S (2014) Cardiac manifestations in systemic sclerosis. World J Cardiol 6:993–1005

    Article  Google Scholar 

  17. Hur DJ, Sugeng L (2019) Non-invasive multimodality cardiovascular imaging of the right heart and pulmonary circulation in pulmonary hypertension. Front Cardiovasc Med 6:24

    Article  Google Scholar 

  18. Jensen AS, Broberg CS, Rydman R, et al (2015) Impaired right, left, or biventricular function and resting oxygen saturation are associated with mortality in Eisenmenger syndrome. Circ Cardiovasc Imaging 8

  19. Sanz J, Sanchez-Quintana D, Bossone E, Bogaard HJ, Naeije R (2019) Anatomy, function, and dysfunction of the right ventricle: JACC State-of-the-Art Review. J Am Coll Cardiol 73:1463–1482

    Article  Google Scholar 

  20. Hoette S, Creuze N, Gunther S et al (2018) RV fractional area change and TAPSE as predictors of severe right ventricular dysfunction in pulmonary hypertension: a CMR study. Lung 196:157–164

    Article  Google Scholar 

  21. Palau-Caballero G, Walmsley J, Van Empel V, Lumens J, Delhaas T (2017) Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol 312:H691–H700

    Article  Google Scholar 

  22. Hardziyenka M, Campian ME, Reesink HJ et al (2011) Right ventricular failure following chronic pressure overload is associated with reduction in left ventricular mass. J Am Coll Cardiol 57:921–928

    Article  Google Scholar 

  23. Murata M, Tsugu T, Kawakami T et al (2016) Prognostic value of three-dimensional echocardiographic right ventricular ejection fraction in patients with pulmonary arterial hypertension. Oncotarget 7:86781–86790

    Article  Google Scholar 

  24. Swift AJ, Rajaram S, Campbell MJ et al (2014) Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 7:100–106

    Article  Google Scholar 

  25. Mathai SC, Sibley CT, Forfia PR et al (2011) Tricuspid annular plane systolic excursion is a robust outcome measure in systemic sclerosis-associated pulmonary arterial hypertension. J Rheumatol 38:2410–2418

    Article  Google Scholar 

  26. Ghio S, Klersy C, Magrini G et al (2010) Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 140:272–278

    Article  Google Scholar 

  27. Rushmer RF, Crystal DK, Wagner C (1953) The functional anatomy of ventricular contraction. Circ Res 1:162–170

    Article  CAS  Google Scholar 

  28. Carlsson M, Ugander M, Heiberg E, Arheden H (2007) The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans. Am J Physiol Heart Circ Physiol 293:H636–H644

    Article  CAS  Google Scholar 

  29. Kovacs A, Lakatos B, Tokodi M, Merkely B (2019) Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Fail Rev 24:511–520

    Article  Google Scholar 

  30. Li Y, Wang Y, Yang Y et al (2018) Tricuspid annular displacement measured by 2-dimensional speckle tracking echocardiography for predicting right ventricular function in pulmonary hypertension: a new approach to evaluating right ventricle dysfunction. Medicine (Baltimore) 97:e11710

    Article  Google Scholar 

  31. Forfia PR, Fisher MR, Mathai SC et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041

    Article  Google Scholar 

  32. Corona-Villalobos CP, Kamel IR, Rastegar N et al (2015) Bidimensional measurements of right ventricular function for prediction of survival in patients with pulmonary hypertension: comparison of reproducibility and time of analysis with volumetric cardiac magnetic resonance imaging analysis. Pulm Circ 5:527–537

    Article  CAS  Google Scholar 

  33. Ho SY, Nihoyannopoulos P (2006) Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92(Suppl 1):i2–i13

  34. Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G (2018) Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol 68-69:507–521

    Article  CAS  Google Scholar 

  35. Peacock AJ, Crawley S, McLure L et al (2014) Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging 7:107–114

    Article  Google Scholar 

  36. Knight DS, Steeden JA, Moledina S, Jones A, Coghlan JG, Muthurangu V (2015) Left ventricular diastolic dysfunction in pulmonary hypertension predicts functional capacity and clinical worsening: a tissue phase mapping study. J Cardiovasc Magn Reson 17:116

    Article  Google Scholar 

Download references

Funding

This study has received funding from the National Natural Science Youth Science Fund Project Foundation of China (81301217), Tianjin Key Project of Applied Basic and Frontier Technology Research Program (14JCZDJC57000), and “13th Fiver-Year Plan” National key R&D projects (2016YFC1300402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Zhang or Dong Li.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dong Li.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Guo, JJ., Yang, F. et al. Indication of the prognosis of pulmonary hypertension by using CMR function parameters. Eur Radiol 31, 7121–7131 (2021). https://doi.org/10.1007/s00330-021-07835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07835-8

Keywords

Navigation