Skip to main content

Advertisement

Log in

MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Preoperative differentiation between benign parotid gland tumors (BPGT) and malignant parotid gland tumors (MPGT) is important for treatment decisions. The purpose of this study was to develop and validate an MRI-based radiomics nomogram for the preoperative differentiation of BPGT from MPGT.

Methods

A total of 115 patients (80 in training set and 35 in external validation set) with BPGT (n = 60) or MPGT (n = 55) were enrolled. Radiomics features were extracted from T1-weighted and fat-saturated T2-weighted images. A radiomics signature model and a radiomics score (Rad-score) were constructed and calculated. A clinical-factors model was built based on demographics and MRI findings. A radiomics nomogram model combining the Rad-score and independent clinical factors was constructed using multivariate logistic regression analysis. The diagnostic performance of the three models was evaluated and validated using ROC curves on the training and validation datasets.

Results

Seventeen features from MR images were used to build the radiomics signature. The radiomics nomogram incorporating the clinical factors and radiomics signature had an AUC value of 0.952 in the training set and 0.938 in the validation set. Decision curve analysis showed that the nomogram outperformed the clinical-factors model in terms of clinical usefulness.

Conclusions

The above-described radiomics nomogram performed well for differentiating BPGT from MPGT, and may help in the clinical decision-making process.

Key Points

• Differential diagnosis between BPGT and MPGT is rather difficult by conventional imaging modalities.

• A radiomics nomogram integrated with the radiomics signature, clinical data, and MRI features facilitates differentiation of BPGT from MPGT with improved diagnostic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-D:

Three-dimensional

ANOVA:

Analysis of variance

BPGT:

Benign parotid gland tumors

CI:

Confidence interval

DCA:

Decision curve analysis

DLI:

Deep lobe involved

FNA:

Fine needle aspiration

fs-T2WI:

Fat-saturated T2-weighted images

GLCM:

Gray-level co-occurrence matrix

GLDM:

Gray-level dependence matrix

GLRLM:

Gray-level run length matrix

GLSZM:

Gray-level size zone matrix

ICC:

Inter-/intra-class correlation coefficient

IST:

Infiltration of surrounding tissue

LASSO:

Least absolute shrinkage and selection operator

MPGT:

Malignant parotid gland tumors

NGTDM:

Neighboring gray-tone difference matrix

Nomo-score:

Nomogram score

OR:

Odds ratio

Rad-score:

Radiomics score

SI:

Signal intensity

T1WI:

T1-Weighted images

References

  1. Stenner M, Klussmann JP (2009) Current update on established and novel biomarkers in salivary gland carcinoma pathology and the molecular pathways involved. Eur Arch Otorhinolaryngol 266:333–341

    Article  Google Scholar 

  2. Bussu F, Parrilla C, Rizzo D, Almadori G, Paludetti G, Galli J (2011) Clinical approach and treatment of benign and malignant parotid masses, personal experience. Acta Otorhinolaryngol Ital 31:135–143

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Papadogeorgakis N, Skouteris CA, Mylonas AI, Angelopoulos AP (2004) Superficial parotidectomy: technical modifications based on tumour characteristics. J Craniomaxillofac Surg 32:350–353

    Article  Google Scholar 

  4. Zbaren P, Schar C, Hotz MA, Loosli H (2001) Value of fine-needle aspiration cytology of parotid gland masses. Laryngoscope 111:1989–1992

    Article  CAS  Google Scholar 

  5. Sergi B, Contucci AM, Corina L, Paludetti G (2004) Value of fine-needle aspiration cytology of parotid gland masses. Laryngoscope 114:789

    Article  Google Scholar 

  6. Bhatia KS, Rasalkar DD, Lee YP et al (2010) Evaluation of real-time qualitative sonoelastography of focal lesions in the parotid and submandibular glands: applications and limitations. Eur Radiol 20:1958–1964

    Article  Google Scholar 

  7. Lee YY, Wong KT, King AD, Ahuja AT (2008) Imaging of salivary gland tumours. Eur J Radiol 66:419–436

    Article  CAS  Google Scholar 

  8. Habermann CR, Arndt C, Graessner J et al (2009) Diffusion-weighted echo-planar MR imaging of primary parotid gland tumors: is a prediction of different histologic subtypes possible? AJNR Am J Neuroradiol 30:591–596

    Article  CAS  Google Scholar 

  9. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  Google Scholar 

  10. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  Google Scholar 

  11. Buch K, Fujita A, Li B, Kawashima Y, Qureshi MM, Sakai O (2015) Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT. AJNR Am J Neuroradiol 36:1343–1348

    Article  CAS  Google Scholar 

  12. Al Ajmi E, Forghani B, Reinhold C, Bayat M, Forghani R (2018) Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. Eur Radiol 28:2604–2611

    Article  Google Scholar 

  13. Fruehwald-Pallamar J, Czerny C, Holzer-Fruehwald L et al (2013) Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed 26:1372–1379

    Article  Google Scholar 

  14. Christe A, Waldherr C, Hallett R, Zbaeren P, Thoeny H (2011) MR imaging of parotid tumors: typical lesion characteristics in MR imaging improve discrimination between benign and malignant disease. AJNR Am J Neuroradiol 32:1202–1207

    Article  CAS  Google Scholar 

  15. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91

    Article  CAS  Google Scholar 

  16. Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  Google Scholar 

  17. Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Muller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196

    Article  Google Scholar 

  18. Alhamzawi R, Ali HTM (2018) The Bayesian adaptive lasso regression. Math Biosci 303:75–82

    Article  Google Scholar 

  19. Okahara M, Kiyosue H, Hori Y, Matsumoto A, Mori H, Yokoyama S (2003) Parotid tumors: MR imaging with pathological correlation. Eur Radiol 13(Suppl 4):L25–L33

    Article  Google Scholar 

  20. Takashima S, Wang J, Takayama F et al (2001) Parotid masses: prediction of malignancy using magnetization transfer and MR imaging findings. AJR Am J Roentgenol 176:1577–1584

    Article  CAS  Google Scholar 

  21. Zhang YF, Li H, Wang XM, Cai YF (2019) Sonoelastography for differential diagnosis between malignant and benign parotid lesions: a meta-analysis. Eur Radiol 29:725–735

    Article  Google Scholar 

  22. Hwang JH, Kim DW, Kim KS, Lee SY (2019) Mucosa-associated lymphoid tissue lymphoma of the accessory parotid gland presenting as a simple cheek mass: a case report. Medicine (Baltimore) 98:e17042

    Article  Google Scholar 

  23. Schmidt RL, Hall BJ, Wilson AR, Layfield LJ (2011) A systematic review and meta-analysis of the diagnostic accuracy of fine-needle aspiration cytology for parotid gland lesions. Am J Clin Pathol 136:45–59

    Article  Google Scholar 

  24. Cantisani V, David E, De Virgilio A et al (2017) Prospective evaluation of quasistatic ultrasound elastography (USE) compared with baseline US for parotid gland lesions: preliminary results of elasticity contrast index (ECI) evaluation. Med Ultrason 19:32–38

    Article  Google Scholar 

  25. Mansour N, Bas M, Stock KF, Strassen U, Hofauer B, Knopf A (2017) Multimodal ultrasonographic pathway of parotid gland lesions. Ultraschall Med 38:166–173

    PubMed  Google Scholar 

  26. Altinbas NK, Gundogdu Anamurluoglu E, Oz II et al (2017) Real-time sonoelastography of parotid gland tumors. J Ultrasound Med 36:77–87

    Article  Google Scholar 

  27. Yabuuchi H, Fukuya T, Tajima T, Hachitanda Y, Tomita K, Koga M (2003) Salivary gland tumors: diagnostic value of gadolinium-enhanced dynamic MR imaging with histopathologic correlation. Radiology 226:345–354

    Article  Google Scholar 

  28. Niazi M, Mohammadzadeh M, Aghazadeh K et al (2020) Perfusion computed tomography scan imaging in differentiation of benign from malignant parotid lesions. Int Arch Otorhinolaryngol 24:e160–e169

    Article  Google Scholar 

  29. Jin GQ, Su DK, Xie D, Zhao W, Liu LD, Zhu XN (2011) Distinguishing benign from malignant parotid gland tumours: low-dose multi-phasic CT protocol with 5-minute delay. Eur Radiol 21:1692–1698

    Article  CAS  Google Scholar 

  30. Morcos SK, Thomsen HS, Webb JA (1999) Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 9:1602–1613

    Article  CAS  Google Scholar 

  31. Thomsen HS, Morcos SK, Almen T et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 23:307–318

    Article  Google Scholar 

  32. Takumi K, Fukukura Y, Hakamada H, Ideue J, Kumagae Y, Yoshiura T (2017) Value of diffusion tensor imaging in differentiating malignant from benign parotid gland tumors. Eur J Radiol 95:249–256

    Article  Google Scholar 

  33. Zhang Z, Song C, Zhang Y, Wen B, Zhu J, Cheng J (2019) Apparent diffusion coefficient (ADC) histogram analysis: differentiation of benign from malignant parotid gland tumors using readout-segmented diffusion-weighted imaging. Dentomaxillofac Radiol 48:20190100

    Article  Google Scholar 

  34. Yabuuchi H, Matsuo Y, Kamitani T et al (2008) Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization? Radiology 249:909–916

    Article  Google Scholar 

  35. Milad P, Elbegiermy M, Shokry T et al (2017) The added value of pretreatment DW MRI in characterization of salivary glands pathologies. Am J Otolaryngol 38:13–20

    Article  Google Scholar 

  36. Nie P, Yang G, Wang Z et al (2020) A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Eur Radiol 30:1274–1284

    Article  Google Scholar 

  37. Wang H, Nie P, Wang Y et al (2020) Radiomics nomogram for differentiating between benign and malignant soft-tissue masses of the extremities. J Magn Reson Imaging 51:155–163

    Article  Google Scholar 

  38. Wang H, Chen H, Duan S, Hao D, Liu J (2020) Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J Magn Reson Imaging 51:791–797

    Article  Google Scholar 

  39. Fruehwald-Pallamar J, Hesselink JR, Mafee MF, Holzer-Fruehwald L, Czerny C, Mayerhoefer ME (2016) Texture-based analysis of 100 MR examinations of head and neck tumors - is it possible to discriminate between benign and malignant masses in a multicenter trial? Rofo 188:195–202

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nicole Okoh, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Dong.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Wen-jian Xu.

Conflict of interest

The authors declare that they have no conflict of interest.

Statistics and biometry

One of the authors (Jian Li) has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic study/observational

• multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying-mei Zheng and Jian Li are collaborative first author

Supplementary Information

ESM 1

(DOCX 16 kb)

ESM 2

(XLSX 2625 kb)

ESM 3

(XLSX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Ym., Li, J., Liu, S. et al. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur Radiol 31, 4042–4052 (2021). https://doi.org/10.1007/s00330-020-07483-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07483-4

Keywords

Navigation