Skip to main content

Advertisement

Log in

Diagnostic outcome and safety of CT-guided core needle biopsy for mediastinal masses: a systematic review and meta-analysis

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This systematic review and meta-analysis aimed to evaluate the diagnostic outcomes and complication rates and to identify potential covariates that could influence these results for computed tomography (CT)–guided core needle biopsy (CNB) of mediastinal masses.

Methods

A computerized search of the PubMed and EMBASE databases was performed to identify original articles on the use of CT-guided CNB for mediastinal mass. The pooled proportions of the diagnostic yield and accuracy were assessed using random effects modeling. We assessed the pooled proportion of complication rates using random effects or fixed effects modeling. Multivariate meta-regression analyses were performed to evaluate the potential sources of heterogeneity.

Results

Eighteen eligible studies (1310 patients with 1345 CT-guided CNBs) were included. The pooled proportions of the diagnostic yield and accuracy of CT-guided CNB for mediastinal masses were 92% (18 studies, 1345 procedures) and 94% (15 studies, 803 procedures), respectively. In the subgroup analysis, the pooled proportions of the total complication rate and major complication rate were 13% and 2%, respectively. In the meta-regression analyses, the number of tissue samplings (odds ratio [OR], 3.3; p = 0.03), real-time fluoroscopy-guided (OR, 2.1; p = 0.02), and percentage of lymphoma (OR, 2.2; p < 0.001) for diagnostic yield, number of tissue samplings (OR = 2.0, p = 0.02) for diagnostic accuracy, and biopsy needle diameter (OR, 2.5; p = 0.002) for total complication rate were all sources of heterogeneity.

Conclusions

CT-guided CNB for mediastinal mass demonstrates high diagnostic outcomes and low complication rates. The use of 20-gauge biopsy needles and obtaining ≥ 3 samples may be recommended to improve diagnostic outcomes and decrease complication rates.

Key Points

The pooled estimates of diagnostic yield and accuracy of computed tomography (CT)–guided core needle biopsy (CNB) for mediastinal masses are 92% and 94%, respectively.

The pooled estimates of the total complication rate and major complication rate were 13% and 2%, respectively.

The use of a 20-gauge needle and ≥ 3 tissue samplings are recommended for CT-guided mediastinal CNB to achieve high diagnostic outcomes and lower complication rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CNB:

Core needle biopsy

FNA:

Fine needle aspiration

OR:

Odd ratio

PRISMA:

Preferred Reporting Items for a Systematic Review and Meta-Analysis

QUADAS-2:

Quality Assessment of Diagnostic Accuracy Studies-2

References

  1. Kim H, Park CM, Lee SM, Goo JM (2015) C-arm cone-beam CT virtual navigation-guided percutaneous mediastinal mass biopsy: diagnostic accuracy and complications. Eur Radiol 25:3508–3517

    Article  PubMed  Google Scholar 

  2. De Margerie-Mellon C, De Bazelaire C, Amorim S et al (2015) Diagnostic yield and safety of computed tomography-guided mediastinal core needle biopsies. J Thorac Imaging 30:319–327

    Article  PubMed  Google Scholar 

  3. Date H (2009) Diagnostic strategies for mediastinal tumors and cysts. Thorac Surg Clin 19(29–35):vi

    Google Scholar 

  4. Bressler EL, Kirkham JA (1994) Mediastinal masses: alternative approaches to CT-guided needle biopsy. Radiology 191:391–396

    Article  CAS  PubMed  Google Scholar 

  5. Iguchi T, Hiraki T, Matsui Y et al (2018) CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses. Diagn Interv Imaging 99:91–97

    Article  CAS  PubMed  Google Scholar 

  6. Rabbani M, Sarrami AH (2016) Computed tomography-guided percutaneous core needle biopsy for diagnosis of mediastinal mass lesions: experience with 110 cases in two university hospitals in Isfahan, Iran. Adv Biomed Res 5:152

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petranovic M, Gilman MD, Muniappan A et al (2015) Diagnostic yield of CT-guided percutaneous transthoracic needle biopsy for diagnosis of anterior mediastinal masses. AJR Am J Roentgenol 205:774–779

    Article  PubMed  Google Scholar 

  8. Kulkarni S, Kulkarni A, Roy D, Thakur M (2008) Percutaneous computed tomography-guided core biopsy for the diagnosis of mediastinal masses. Ann Thorac Med 3:13–17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Priola AM, Priola SM, Cataldi A et al (2008) CT-guided percutaneous transthoracic biopsy in the diagnosis of mediastinal masses: evaluation of 73 procedures. Radiol Med 113:3–15

    Article  CAS  PubMed  Google Scholar 

  10. Shaham D, Goitein O, Vazquez MF et al (2001) Biopsy of mediastinal tumors: needle biopsy versus mediastinoscopy: pro needle biopsy. J Bronchol 8:132–138

    Google Scholar 

  11. Neyaz Z, Lal H, Thakral A, Nath A, Rao R, Verma R (2016) Percutaneous computed tomography-guided aspiration and biopsy of intrathoracic lesions: results of 265 procedures. Lung India 33:620–625

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  13. McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396

    Article  PubMed  Google Scholar 

  14. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  15. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111

    Article  PubMed  Google Scholar 

  16. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28:105–114

    Article  PubMed  Google Scholar 

  17. Higgins J, Green S (2011) Cochrane handbook for systematic reviews of interventions. Version 5.1.0. The Cochrane Collaboration, London. Available via http://handbook.cochrane.org. Accessed 10 Jan 2019

  18. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  19. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463

    Article  CAS  PubMed  Google Scholar 

  21. Sacks D, McClenny TE, Cardella JF, Lewis CA (2003) Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol 14:S199–S202

    Article  PubMed  Google Scholar 

  22. Gardner D, VanSonnenberg E, D’Agostino HB, Casola G, Taggart S, May S (1991) CT-guided transthoracic needle biopsy. Cardiovasc Intervent Radiol 14:17–23

    Article  CAS  PubMed  Google Scholar 

  23. Divisi D, Battaglia C, Crisci R et al (1998) Diagnostic and therapeutic approaches for masses in the posterior mediastinum. Acta Biomed Ateneo Parmense 69:123–128

    CAS  PubMed  Google Scholar 

  24. Lin ZY, Li YG (2009) Artificial pneumothorax with position adjustment for computed tomography-guided percutaneous core biopsy of mediastinum lesions. Ann Thorac Surg 87:920–924

    Article  PubMed  Google Scholar 

  25. Malone LJ, Stanfill RM, Wang H, Fahey KM, Bertino RE (2013) Effect of intraparenchymal blood patch on rates of pneumothorax and pneumothorax requiring chest tube placement after percutaneous lung biopsy. AJR Am J Roentgenol 200:1238–1243

    Article  PubMed  Google Scholar 

  26. Scalzetti EM (2005) Protective pneumothorax for needle biopsy of mediastinum and pulmonary hilum. J Thorac Imaging 20:214–219

    Article  PubMed  Google Scholar 

  27. Azrumelashvili T, Mizandari M, Dundua T, Magalashvili D (2016) Ultrasound and CT guided thoracic biopsy approaches - effectiveness and complications. Georgian Med News:32–39

  28. Ghanaati H, Firouznia K, Motevalli M, Mirdamadi L, Jalali AH (2008) Fluoroscopic versus conventional computed tomography-guided biopsy. Iran J Radiol 5:39–42

    Google Scholar 

  29. Gorgulu FF, Oksuzler FY, Arslan SA, Arslan M, Ozsoy IE, Gorgulu O (2017) Computed tomography-guided transthoracic biopsy: factors influencing diagnostic and complication rates. J Int Med Res 45:808–815

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khan AR, Khan MY, Javaid A, Hussain I (2010) Percutaneous image guided cutting needle biopsy of mediastinal masses: diagnostic yield and complications. J Postgrad Med Inst 24:58–61

    Google Scholar 

  31. VanSonnenberg E, Casola G, Ho M et al (1988) Difficult thoracic lesions: CT-guided biopsy experience in 150 cases. Radiology 167:457–461

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe M, Takagi K, Aoki T et al (1998) A comparison of biopsy through a parasternal anterior mediastinotomy under local anesthesia and percutaneous needle biopsy for malignant anterior mediastinal tumors. Surg Today 28:1022–1026

    Article  CAS  PubMed  Google Scholar 

  33. Westcott JL (1981) Percutaneous needle aspiration of hilar and mediastinal masses. Radiology 141:323–329

    Article  CAS  PubMed  Google Scholar 

  34. Yadav RK, Sen R, Agarwal S, Aggarwal S (2010) CT-guided FNAC of intrathoracic mass lesions--a study among 35 patients. J Indian Med Assoc 108:571–574

    PubMed  Google Scholar 

  35. Zamboni M, Lannes DC, Cordeiro PDB et al (2009) Transthoracic biopsy with core cutting needle (Trucut) for the diagnosis of mediastinal tumors. Rev Port Pneumol 15:589–595

    Article  PubMed  Google Scholar 

  36. Azrumelashvili T, Mizandari M, Magalashvili D, Dundua T (2015) Imaging guided mediastinal percutaneal core biopsy--technique and complications. Georgian Med News 24–34

  37. Branden E, Wallgren S, Hogberg H, Koyi H (2014) Computer tomography-guided core biopsies in a county hospital in Sweden: complication rate and diagnostic yield. Ann Thorac Med 9:149–153

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Farias AP, Deheinzelin D, Younes RN, Chojniak R (2003) Computed tomography-guided biopsy of mediastinal lesions: fine versus cutting needles. Rev Hosp Clin Fac Med Sao Paulo 58:69–74

    Article  PubMed  Google Scholar 

  39. Floridi C, Reginelli A, Capasso R et al (2017) Percutaneous needle biopsy of mediastinal masses under C-arm conebeam CT guidance: diagnostic performance and safety. Med Oncol:34

  40. Greif J, Staroselsky AN, Gernjac M et al (1999) Percutaneous core needle biopsy in the diagnosis of mediastinal tumors. Lung Cancer 25:169–173

    Article  CAS  PubMed  Google Scholar 

  41. Hagberg H, Ahlström HK, Magnusson A, Sundström C, Åström GK (2000) Value of transsternal core biopsy in patients with a newly diagnosed mediastinal mass. Acta Oncol 39:195–198

    Article  CAS  PubMed  Google Scholar 

  42. Jiao D, Huang K, Wu G, Wang Y, Han X (2016) Flat detector cone-beam CT-guided percutaneous needle biopsy of mediastinal lesions: preliminary experience. Radiol Med 121:769–779

    Article  PubMed  Google Scholar 

  43. Sklair-Levy M, Polliack A, Shaham D et al (2000) CT-guided core-needle biopsy in the diagnosis of mediastinal lymphoma. Eur Radiol 10:714–718

    Article  CAS  PubMed  Google Scholar 

  44. Yanagawa M, Tomiyama N, Honda O et al (2010) CT-guided percutaneous cutting needle biopsy of thymic epithelial tumors. Comparison to the accuracy of computed tomographic diagnosis according to the World Health Organization classification. Acad Radiol 17:772–778

    Article  PubMed  Google Scholar 

  45. Yokoyama K, Ikeda O, Kawanaka K et al (2014) Comparison of CT-guided percutaneous biopsy with and without registration of prior PET/CT images to diagnose mediastinal tumors. Cardiovasc Intervent Radiol 37:1306–1311

    Article  PubMed  Google Scholar 

  46. Yousef HY, Dawood HA, Mohey N (2017) Is there any role for diffusion weighted magnetic resonance imaging before transthoracic CT guided biopsy? Egypt J Radiol Nucl Med 48:927–930

    Article  Google Scholar 

  47. Lim C, Lee KY, Kim YK, Ko JM, Han DH (2013) CT-guided core biopsy of malignant lung lesions: how many needle passes are needed? J Med Imaging Radiat Oncol 57:652–656

    Article  PubMed  Google Scholar 

  48. Hiraki T, Mimura H, Gobara H et al (2009) CT fluoroscopy-guided biopsy of 1,000 pulmonary lesions performed with 20-gauge coaxial cutting needles: diagnostic yield and risk factors for diagnostic failure. Chest 136:1612–1617

    Article  PubMed  Google Scholar 

  49. Beck KS, Kim TJ, Lee KY, Kim YK, Kang JH, Han DH (2019) CT-guided coaxial biopsy of malignant lung lesions: are cores from 20-gauge needle adequate for histologic diagnosis and molecular analysis? J Thorac Dis 11:753–765

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eichenauer DA, Engert A, Dreyling M ESMO Guidelines Working Group (2011) Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi55–vi58

  51. Tilly H, Dreyling M, ESMO Guidelines Working Group (2010) Diffuse large B-cell non-Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Suppl 5):v172–v174

    Article  PubMed  Google Scholar 

  52. Frederiksen JK, Sharma M, Casulo C, Burack WR (2015) Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med 139:245–251

    Article  PubMed  Google Scholar 

  53. Priola SM, Priola AM, Cataldi A, Fava C (2006) Nodular sclerosing Hodgkin disease presenting as a sternal mass. Br J Haematol 135:594

    Article  PubMed  Google Scholar 

  54. Kim GR, Hur J, Lee SM et al (2011) CT fluoroscopy-guided lung biopsy versus conventional CT-guided lung biopsy: a prospective controlled study to assess radiation doses and diagnostic performance. Eur Radiol 21:232–239

    Article  PubMed  Google Scholar 

  55. Prosch H, Stadler A, Schilling M et al (2012) CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol 81:1029–1033

    Article  PubMed  Google Scholar 

  56. Heerink WJ, de Bock GH, de Jonge GJ, Groen HJ, Vliegenthart R, Oudkerk M (2017) Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol 27:138–148

    Article  CAS  PubMed  Google Scholar 

  57. Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD (2003) CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology 229:475–481

    Article  PubMed  Google Scholar 

  58. Kuban JD, Tam AL, Huang SY et al (2015) The effect of needle gauge on the risk of pneumothorax and chest tube placement after percutaneous computed tomographic (CT)-guided lung biopsy. Cardiovasc Intervent Radiol 38:1595–1602

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jong Yun.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Seong Jong Yun, MD, PhD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Seong Jong Yun, MD) has significant statistical expertise.

Informed consent

Written informed consent was not required for this study because the nature of our study was a systemic review and meta-analysis.

Ethical approval

Institutional Review Board approval was not required because the nature of our study was a systemic review and meta-analysis.

Methodology

• Meta-analysis performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.N., Yun, S.J., Kim, J.I. et al. Diagnostic outcome and safety of CT-guided core needle biopsy for mediastinal masses: a systematic review and meta-analysis. Eur Radiol 30, 588–599 (2020). https://doi.org/10.1007/s00330-019-06377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06377-4

Keywords

Navigation