Skip to main content

Advertisement

Log in

Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To image the pedunculopontine tegmental nucleus (PPN), a deep brain stimulation (DBS) target for Parkinson disease, using MRI with validated results.

Methods

This study used the MP2RAGE sequence with high resolution and enhanced grey-white matter contrast on a 7-T ultra-high-field MRI system to image the PPN as well as a diffusion spectrum imaging method on a 3-T MRI system to reconstruct the main fibre systems surrounding the PPN. The coordinates of the rostral and caudal PPN poles of both sides were measured in relation to the third and fourth ventricular landmarks on the 7-T image.

Results

The boundary of the PPN was delineated, and showed morphology consistent with previous histological works. The main fibres around the PPN were reconstructed. The pole coordinate results combined with the fibre spatial relationships validate the imaging results.

Conclusions

A practical protocol is provided to directly localise the PPN using MRI; the position and morphology of the PPN can be obtained and validated by locating its poles relative to two ventricular landmarks and by inspecting its spatial relationship with the surrounding fibre systems. This technique can be potentially used in clinics to define the boundary of the PPN before DBS surgery for treatment of Parkinson disease in a more precise and reliable manner.

Key points

• Combined information helps localise the PPN as a DBS target for PD patients

• Scan the PPN at 7 T and measure its coordinates against different ventricular landmarks

• Reconstruct the main fibres around the PPN using diffusion spectrum imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Anterior commissure

CA:

Cerebral aqueduct

CTT:

Central tegmental tracts

DBS:

Deep brain stimulation

DIV:

MP2RAGE two-echo divided image

DSCP:

Decussation of the superior cerebellar peduncle

DSI:

Diffusion spectrum imaging

DSI0:

DSI image with b value = 0

DTI:

Diffusion tensor imaging

ML:

Medial lemniscus

PAG:

Periaqueductal grey

PC:

Posterior commissures

PD:

Parkinson disease

Point B:

Base point of the B-F coordinate

Point F:

Fastigial point of the B-F coordinate

PPN:

Pedunculopontine tegmental nucleus

QA:

Mean quantitative anisotropy

REF:

Second echo of the MP2RAGE image

SCP:

Superior cerebellar peduncle

SNc:

Substantia nigra pars compacta

STN:

Subthalamic nucleus

References

  1. Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem. Karger, Switzerland

  2. Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego

    Google Scholar 

  3. Strumpf H, Noesselt T, Schoenfeld MA et al (2016) Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers. PLoS ONE 11:e0155206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Okada K, Kobayashi Y (2013) Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus. Front Integr Neurosci 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hong S, Hikosaka O (2014) Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 282:139–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S (2016) The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm 123:667–678

    Article  PubMed  Google Scholar 

  7. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson's disease. Brain 123:1767–1783

    Article  PubMed  Google Scholar 

  8. Fournier-Gosselin M-P, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM (2013) Regional anatomy of the pedunculopontine nucleus: Relevance for deep brain stimulation. Mov Disord 28:1330–1336

    Article  PubMed  Google Scholar 

  9. Karachi C, Grabli D, Bernard F et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kojima J, Yamaji Y, Matsumura M et al (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114

    Article  PubMed  CAS  Google Scholar 

  11. Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430

    Article  PubMed  Google Scholar 

  12. Karachi C, André A, Bertasi E, Bardinet E, Lehéricy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32:9396–9401

    Article  PubMed  CAS  Google Scholar 

  13. Snijders AH, Leunissen I, Bakker M et al (2011) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134:59–72

    Article  PubMed  Google Scholar 

  14. Mazzone P, Lozano A, Stanzione P et al (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. NeuroReport 16:1877–1881

    Article  PubMed  Google Scholar 

  15. Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease. NeuroReport 16:1883–1887

    Article  PubMed  Google Scholar 

  16. Moro E, Hamani C, Poon YY et al (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. Brain 133:215–224

    Article  PubMed  Google Scholar 

  17. Ferraye MU, Debu B, Fraix V et al (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease. Brain 133:205–214

    Article  PubMed  CAS  Google Scholar 

  18. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, Stuttgart, New York

    Google Scholar 

  19. Hariz MI, Krack P, Melvill R et al (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96–101

    Article  PubMed  Google Scholar 

  20. Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174

    Article  PubMed  Google Scholar 

  21. Shimamoto SA, Larson PS, Ostrem JL, Glass GA, Turner RS, Starr PA (2010) Physiological identification of the human pedunculopontine nucleus. J Neurol Neurosurg Psychiatry 81:80–86

    Article  PubMed  CAS  Google Scholar 

  22. Zrinzo L, Zrinzo LV, Tisch S et al (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598

    Article  PubMed  Google Scholar 

  23. Zrinzo L, Zrinzo L, Massey L et al (2011) Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. J Neural Transm 118:1487–1495

    Article  PubMed  Google Scholar 

  24. Alho AT, Hamani C, Alho EJ et al (2017) Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation. Brain Struct Funct. https://doi.org/10.1007/s00429-016-1356-0:1-12

  25. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281

    Article  PubMed  Google Scholar 

  26. Wedeen VJ, Hagmann P, Tseng W-YI, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  27. Feinberg DA, Moeller S, Smith SM et al (2010) Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging. PLoS ONE 5:e15710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63:569–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rosset A, Spadola L, Ratib O (2004) OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images. J Digit Imaging 17:205–216

    Article  PubMed  PubMed Central  Google Scholar 

  30. Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei: a variability study. Raven Press, New York

    Google Scholar 

  31. Lay DC (2012) Linear Algebra and Its Applications, 4th edn. Addison Wesley, Boston

    Google Scholar 

  32. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635

    Article  PubMed  Google Scholar 

  33. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wedeen VJ, Wang RP, Schmahmann JD et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41:1267–1277

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez-Miranda JC, Pathak S, Engh J et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71:430–453

    Article  PubMed  Google Scholar 

  36. Stefani A, Lozano AM, Peppe A et al (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130:1596–1607

    Article  PubMed  Google Scholar 

  37. Jenkinson N, Brittain JS, Hicks SL, Kennard C, Aziz TZ (2012) On the Origin of Oscillopsia during Pedunculopontine Stimulation. Stereotact Funct Neurosurg 90:124–129

    Article  PubMed  Google Scholar 

  38. Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35:4792–4803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Thevathasan W, Coyne TJ, Hyam JA et al (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1254

    Article  PubMed  Google Scholar 

  40. Thevathasan W, Silburn PA, Brooker H et al (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatry 81:1099–1104

    Article  PubMed  Google Scholar 

  41. Welter M-L, Demain A, Ewenczyk C et al (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 262:1515–1525

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jing Luo and Ms. Hong Xu for their assistance with the experimental conditions and Dr. Penghu Wei and Dr. Xu Yan for their technical advice.

Funding

This study has received funding from the Chinese MOST (Ministry of Science and Technology of China) “973” grant (2015CB351701), NSFC (National Natural Science Foundation of China) grants (31730039, 81601060), and Beijing Municipal Commission of Science and Technology grant (Z161100000116059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Qing Zhang or Yan Zhuo.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yan Zhuo.

Conflict of interest

The author Jing An is an employee of Siemens responsible for customer research support. The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• experimental

• performed at one institution

Additional information

Yu-Qing Zhang and Yan Zhuo are joint corresponding authors.

Electronic supplementary material

ESM 1

(DOCX 332 kb)

ESM 2

(DOCX 137 kb)

ESM 3

(DOCX 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, F., Wang, JW., Wang, B. et al. Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 28, 3882–3892 (2018). https://doi.org/10.1007/s00330-017-5299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5299-5

Keywords

Navigation