Skip to main content
Log in

Intravoxel incoherent motion MR imaging of early cervical carcinoma: correlation between imaging parameters and tumor-stroma ratio

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate if intravoxel incoherent motion (IVIM) MR imaging can predict the tumour-stroma ratio (TSR) in patients with early cervical carcinoma.

Methods

Fifty-four patients with early cervical carcinoma were prospectively enrolled into this study. All patients underwent IVIM imaging and parameters including D, D* and f value were measured. The tumours were classified into stroma-rich and stroma-poor group according to TSR, and comparisons of IVIM parameters between two groups were performed. The relationships between IVIM parameters and TSR were analysed by using a multivariate multi-regression analysis.

Results

D and f values were significantly lower in stroma-poor tumours than in stroma-rich tumours (p=0.02, 0.04), while the difference in D* value between two groups didn't achieve statistical significance (p=0.09). The areas under ROC curves of D and f values in discriminating stroma-rich and stroma-poor tumours were 0.835 (95%CI=0.616~0.905) and 0.686 (95%CI=0.575~0.798). In multiple linear regression analysis, D value, pathologic type, histologic grade, tumour size and f value were independently correlated with TSR of cervical carcinoma.

Conclusions

D and f values are independently correlated with TSR of cervical carcinoma and have the potential for quantitative measurement of TSR.

Key Points

TSR is a recognized independent prognostic factor in many solid tumours.

D and f values measured by IVIM MRI are independently correlated with TSR while D* is not.

IVIM offers the potential to predict TSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mesker WE, Junggeburt JM, Szuhai K et al (2007) The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumour stage. Cell Oncol 29:387–398

    PubMed  PubMed Central  Google Scholar 

  2. Liu J, Liu J, Li J et al (2014) tumour-stroma ratio is an independent predictor for survival in early cervical carcinoma. Gynecol Oncol 132:81–86

    Article  PubMed  Google Scholar 

  3. de Kruijf EM, van Nes JG, van de Velde CJ et al (2011) tumour-stroma ratio in the primary tumour is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125:687–696

    Article  PubMed  Google Scholar 

  4. Ahn S, Cho J, Sung J et al (2012) The prognostic significance of tumour-associated stroma in invasive breast carcinoma. Tumour Biol 33:1573–1580

    Article  PubMed  Google Scholar 

  5. Gremonprez F, Descamps B, Izmer A et al (2015) Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumour growth in a mouse colorectal carcinomatosis model. Oncotarget 6:29889–29900

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu J, Liang C, Chen M, Su W (2016) Association between tumour-stroma ratio and prognosis in solid tumour patients: a systematic review and meta-analysis. Oncotarget 7:68954–68965

    PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Song W, Wang K, Zou S (2017) Tumour-stroma ratio(TSR) as a potential novel predictor of prognosis in digestive system cancers: A meta-analysis. Clin Chim Acta 472:64–68

    Article  CAS  PubMed  Google Scholar 

  8. Roeke T, Sobral-Leite M, Dekker TJA (2017) The prognostic value of the tumour-stroma ratio in primary operable invasive cancer of the breast: a validation study. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-017-4445-8

  9. Zhang XL, Jiang C, Zhang ZX, Liu F, Zhang F, Cheng YF (2014) The tumour-stroma ratio is an independent predictor for survival in nasopharyngeal cancer. Oncol Res Treat 37:480–484

    Article  CAS  PubMed  Google Scholar 

  10. Ko ES, Han BK, Kim RB et al (2014) Apparent diffusion coefficient in estrogen receptor-positive invasive ductal breast carcinoma: correlations with tumour-stroma ratio. Radiology 271:30–37

    Article  PubMed  Google Scholar 

  11. Che S, Zhao X, Ou Y et al (2016) Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine (Baltimore) 95:e2420–e2432

    Article  CAS  Google Scholar 

  12. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  13. Zhang G, Wang S, Wen D et al (2016) Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI. Sci Rep 6:38782–38791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klauss M, Mayer P, Maier-Hein K et al (2016) IVIM-diffusion-MRI for the differentiation of solid benign and malignant hypervascular liver lesions-evaluation with two different MR scanners. Eur J Radiol 85:1289–1294

    Article  PubMed  Google Scholar 

  15. Lee YJ, Kim SH, Kang BJ et al (2017) Intravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 45:1394–1406

    Article  PubMed  Google Scholar 

  16. Ma C, Li Y, Wang L et al (2017) Intravoxel incoherent motion DWI of the pancreatic adenocarcinomas: monoexponential and biexponential apparent diffusion parameters and histopathological correlations. Cancer Imaging 28:12–21

    Article  Google Scholar 

  17. Xu XQ, Choi YJ, Sung YS et al (2016) Intravoxel incoherent motion MR imaging in the head and neck: correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging. Korean J Radiol 17:641–649

    Article  PubMed  PubMed Central  Google Scholar 

  18. Caldas-Magalhaes J, Kasperts N, Kooij N et al (2012) Validation of imaging with pathology in laryngeal cancer: accuracy of the registration methodology. Int J Radiat Oncol Biol Phys 82:e289–e298

    Article  PubMed  Google Scholar 

  19. Odida M, Schmauz R (1996) Classification and grading of squamous cell carcinoma of the cervix. East Afr Med J 73:S9–S10

    CAS  PubMed  Google Scholar 

  20. Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics. 45:255–268

    Article  CAS  PubMed  Google Scholar 

  21. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776

    Article  PubMed  Google Scholar 

  22. Correia MM, Carpenter TA, Williams GB (2009) Looking for the optimal DTI acquisition scheme given a maximum scan time: are more b-values a waste of time? Magn Reson Imaging 27:163–175

    Article  PubMed  Google Scholar 

  23. Wu WC, Yang SC, Chen YF, Tseng HM, My PC (2017) Simultaneous assessment of cerebral blood volume and diffusion heterogeneity using hybrid IVIM and DK MR imaging: initial experience with brain tumours. Eur Radiol 27:306–314

    Article  PubMed  Google Scholar 

  24. Driessen JP, Caldas-Magalhaes J, Janssen LM et al (2014) Diffusion-weighted MR imaging in laryngeal and hypopharyngeal carcinoma: association between apparent diffusion coefficient and histologic findings. Radiology 272:456–463

    Article  PubMed  Google Scholar 

  25. Lee EY, Yu X, Chu MM et al (2014) Perfusion and diffusion characteristics of cervical cancer based on intraxovel incoherent motion MR imaging-a pilot study. Eur Radiol 24:1506–1513

    Article  PubMed  Google Scholar 

  26. Zhu L, Zhu L, Shi H et al (2016) Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging. BMC Cancer 16:79–87

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang YC, Hu S, Hu XM et al (2015) Intravoxel incoherent motion magnetic resonance imaging for diagnosis of cervical cancer and evaluation of response of uterine cervical cancer to radiochemotherapy: a pilot study. Oncology and Translational Medicine 1:P164–P170

    Google Scholar 

  28. Winfield JM, Orton MR, Collins DJ et al (2017) Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI. Eur Radiol 27:627–636

    Article  PubMed  Google Scholar 

  29. Aoyagi T, Shuto K, Okazumi S et al (2012) Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis. Eur Radiol 22:1172–1177

    Article  PubMed  Google Scholar 

  30. Partridge SC, Mullins CD, Kurland BF et al (2010) Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size. AJR Am J Roentgenol 194:1664–1673

    Article  PubMed  Google Scholar 

  31. Liu Y, Bai R, Sun H et al (2009) Diffusion weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clinical Radiology 64:1067–1074

    Article  CAS  PubMed  Google Scholar 

  32. Kuang F, Ren J, Zhong Q et al (2013) The value of apparent diffusion coefficient in the assessment of cervical cancer. Eur Radiol 23:1050–1058

    Article  PubMed  Google Scholar 

  33. Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2016) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 75:2175–2184

    Article  CAS  PubMed  Google Scholar 

  34. Jerome NP, Miyazaki K, Collins DJ et al (2017) Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort. Eur Radiol 27:345–353

    Article  PubMed  Google Scholar 

  35. Lin M, Yu X, Chen Y et al (2017) Contribution of mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging in the diagnosis and differentiation of uterine cervical carcinoma. Eur Radiol 27:2400–2410

    Article  PubMed  Google Scholar 

  36. Verma S, Sarkar S, Young J et al (2016) Evaluation of the impact of computed high b-value diffusion-weighted imaging on prostate cancer detection. Abdom Radiol (NY) 41:934–945

    Article  Google Scholar 

  37. Becker AS, Perucho JA, Wurnig MC et al (2017) Assessment of cervical cancer with a parameter-free intravoxel incoherent motion imaging algorithm. Korean J Radiol 18:510–518

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Li Xiang Sheng, M.D. and Yu Tao, M.D.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Prospective

• diagnostic study / observational

• performed at one institution

Additional information

Xiangsheng Li and Ping Wang equally contributed to the work and should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, P., Li, D. et al. Intravoxel incoherent motion MR imaging of early cervical carcinoma: correlation between imaging parameters and tumor-stroma ratio. Eur Radiol 28, 1875–1883 (2018). https://doi.org/10.1007/s00330-017-5183-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5183-3

Keywords

Navigation