Skip to main content
Log in

Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m2/kidney.

Methods

This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up.

Results

A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m2/kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m2/kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up.

Conclusion

Length-split GFR can be used to detect patients requiring scintigraphy.

Key points

Excellent correlation between kidney length and scintigraphy predicted GFR

Kidney length screening detects all donors with GFR lower than 40 mL/min/1.73 m 2

Kidney length screening can replace scintigraphy screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

CT:

computed tomography

Cr-EDTA:

51Cr-ethylene-diamine tetra acetic acid

Tc-DTPA:

99mTc-diethylene-triamine penta acetic acid

GFR:

glomerular filtration rate

MDRD:

modification of diet in renal disease

ROC:

receiver operating characteristics

ROI:

region of interest

SRF:

split renal function

SRV:

split renal volume

OLS:

ordinary least squares

References

  1. Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342:605–612

    Article  CAS  PubMed  Google Scholar 

  2. Legendre C, Canaud G, Martinez F (2014) Factors influencing long-term outcome after kidney transplantation. Transpl Int 27:19–27

    Article  CAS  PubMed  Google Scholar 

  3. Garg AX, Muirhead N, Knoll G, Yang RC, Prasad GV, Thiessen-Philbrook H et al (2006) (Donor Nephrectomy Outcomes Research (DONOR) Network). Proteinuria and reduced kidney function in living kidney donors: A systematic review, meta-analysis, and meta-regression. Kidney Int 70(10):1801–1810

    Article  CAS  PubMed  Google Scholar 

  4. Ibrahim HN, Foley R, Tan L, Rogers T, Bailey RF, Guo H et al (2009) Long-term consequences of kidney donation. N Engl J Med 360(5):459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mjoen G, Hallan S, Hartmann A, Foss A, Midtvedt A, Oyen O et al (2014) Long-term risks for kidney donors. Kidney Int 86:162–167

    Article  PubMed  Google Scholar 

  6. Muzaale AD, Massie AB, Wang MC, Montgomery RA, McBride MA, Wainright JL et al (2014) Risk of end-stage renal disease following live kidney donation. JAMA 311:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yakoubi R, Autorino R, Kassab A, Long JA, Haber GP, Kaouk JH (2013) Does preserved kidney volume predict 1 year donor renal function after laparoscopic living donor nephrectomy? Int J Urol 20(9):931–934

    Article  PubMed  Google Scholar 

  8. Tanriover B, Fernandez S, Campenot ES, Newhouse JH, Oyfe I, Mohan P, Sandikci B, Radhakrishnan J, Wexler JJ, Carroll MA, Sharif S, Cohen DJ, Ratner LE, Hardy MA (2015) Live Donor Renal Anatomic Asymmetry and Posttransplant Renal Function. Transplantation 99(8):e66–e74

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moore DR, Serur D, Rudow DL, Rodrigue JR, Hays R, Cooper M (2015) Living Donor Kidney Transplantation: Improving Efficiencies in Live Kidney Donor Evaluation-Recommendations from a Consensus Conference. Clin J Am Soc Nephrol 10(9):1678–1686

    Article  PubMed  PubMed Central  Google Scholar 

  10. Diez A, Powelson J, Sundaram CP, Taber TE, Mujtaba MA, Yaqub MS et al (2014) Correlation between CT-based measured renal volumes and nuclear-renography-based split renal function in living kidney donors. Clinical diagnostic utility and practice patterns. Clin Transplant 28(6):675–682

    Article  PubMed  Google Scholar 

  11. Patankar K, Su-Tong Low R, Blakeway D (2014) Ferrari P Comparison of computer tomographic volumetry versus nuclear split renal function to determine residual renal function after living kidney donation. Acta Radiol 55(6):753–760

    Article  PubMed  Google Scholar 

  12. Halleck F, Diederichs G, Koehlitz T, Slowinski T, Engelken F, Liefeldt L et al (2013) Volume matters: CT-based renal cortex volume measurement in the evaluation of living kidney donors. Transplantation International 26:1208–1216

    Article  CAS  Google Scholar 

  13. Yokoyama N, Ishimura T (2015) Usefulness of three-dimensional computerized tomographic volumetry for determining split renal function in donors for living-related kidney transplantation. Transplant Proc 47(3):588–590

    Article  CAS  PubMed  Google Scholar 

  14. Breau RH, Clark E, Bruner B, Cervini P, Atwell T, Knoll G et al (2013) A simple method to estimate renal volume from computed tomography. Can Urol Assoc J 7(5-6):189–192

    Article  PubMed  PubMed Central  Google Scholar 

  15. Summerlin AL, Lockhart ME, Strang AM, Kolettis PN, Fineberg NS, Smith JK (2008) Determination of split renal function by 3D reconstruction of CT angiograms: a comparison with gamma camera renography. AJR Am J Roentgenol 191:1552–1558

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kato F, Kamishima T, Morita K, Muto NS, Okamoto S, Omatsu T et al (2011) Rapid estimation of split renal function in kidney donors using software developed for computed tomographic renal volumetry. Eur J Radiol 79:15–20

    Article  PubMed  Google Scholar 

  17. Soga S, Britz-Cunningham S, Kumamaru KK, Malek SK, Tullius SG, Rybicki FJ (2012) Comprehensive comparative study of computed tomography-based estimates of split renal function for potential renal donors: modified ellipsoid method and other CT-based methods. J Comput Assist Tomogr 36:323–329

    Article  PubMed  Google Scholar 

  18. Piepsz A, Kinthaert J, Tondeur M, Ham HR (1996) The robustness of the Patlak-Rutland slope for the determination of split renal function. Nucl Med Commun 17(9):817–821

    Article  CAS  PubMed  Google Scholar 

  19. Delmonico FL: A report of the Amsterdam forum on thecare of the live kidney donor: data and medical guidelines.Transplantation 79[Suppl]: S53–S66, 2005

  20. Bia MJ, Ramos EL, Danovitch GM, Gaston RS, Harmon WE, Leichtman AB et al (1995) Evaluation of living renal donors. The current practice of US transplant centers. Transplantation 60:322–327

    Article  CAS  PubMed  Google Scholar 

  21. Gabolde M, Herve C, Moulin AM (2001) Evaluation, selection, and follow-up of live kidney donors: A review of current practice in French renal transplant centres. Nephrol Dial Transplant 16:2048–2052

    Article  CAS  PubMed  Google Scholar 

  22. Rule AD, Gussak HM, Pond GR, Bergstralh EJ, Stegall MD, Cosio FG et al (2004) Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis 43:112–119

    Article  PubMed  Google Scholar 

  23. Davis CL, Delmonico FL (2005) Living-Donor Kidney Transplantation: A Review of the Current Practices for the Live Donor. J Am Soc Nephrol 16:2098–2110

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Marie Courbebaisse. François Gaillard thanks Ecole de l'INSERM-Liliane Bettencourt. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding.

No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained, REF2013-11-10. Written informed consent was waived by the Institutional Review Board. Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gaillard.

Additional information

Christophe Legendre and Marie Courbebaisse contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPG 2437 kb)

ESM 2

(JPG 1407 kb)

ESM 3

(JPG 4783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaillard, F., Pavlov, P., Tissier, AM. et al. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors. Eur Radiol 27, 651–659 (2017). https://doi.org/10.1007/s00330-016-4410-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4410-7

Keywords

Navigation