Skip to main content

Advertisement

Log in

Combining standardized uptake value of FDG-PET and apparent diffusion coefficient of DW-MRI improves risk stratification in head and neck squamous cell carcinoma

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the independent prognostic value of standardized uptake value (SUV) and apparent diffusion coefficient (ADC), separately and combined, in order to evaluate if the combination of these two variables allows further prognostic stratification of patients with head and neck squamous cell carcinomas (HNSCC).

Methods

Pretreatment SUV and ADC were calculated in 57 patients with HNSCC. Mean follow-up was 21.3 months. Semiquantitative analysis of primary tumours was performed using SUVmaxT/B, ADCmean, ADCmin and ADCmax. The prognostic value of SUVmaxT/B, ADCmean, ADCmin and ADCmax in predicting disease-free survival (DFS) was evaluated with log-rank test and Cox regression models.

Results

Patients with SUVmaxT/B ≥5.75 had an overall worse prognosis (p = 0.003). After adjusting for lymph node status and diameter, SUVmaxT/B and ADCmin were both significant predictors of DFS with hazard ratio (HR) = 10.37 (95 % CI 1.22–87.95) and 3.26 (95 % CI 1.20–8.85) for SUVmaxT/B ≥5.75 and ADCmin ≥0.58 × 10−3 mm2/s, respectively. When the analysis was restricted to subjects with SUVmaxT/B ≥5.75, high ADCmin significantly predicted a worse prognosis, with adjusted HR = 3.11 (95 % CI 1.13–8.55).

Conclusions

The combination of SUVmaxT/B and ADCmin improves the prognostic role of the two separate parameters; patients with high SUVmaxT/B and high ADCmin are associated with a poor prognosis.

Key Points

High SUV maxT/B is a poor prognostic factor in HNSCC

High ADC min is a poor prognostic factor in HNSCC

In patients with high SUV maxT/B , high ADC min identified those with worse prognosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CT:

Computed tomography

DW:

Diffusion-weighted

FDG:

Fluorodeoxyglucose

HNSCC:

Head and neck squamous cell carcinoma

MRI:

Magnetic resonance imaging

PET:

Positron-emission tomography

ROI:

Region of interest

SUV:

Standardized uptake value

TSE:

Turbo spin echo

VOI:

Volumetric region of interest

References

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. Lancet 371:1695–1709

    Article  CAS  PubMed  Google Scholar 

  2. Partovi S, Kohan A, Vercher-Conejero JL et al (2014) Qualitative and quantitative performance of 18F-FDG-PET/MRI versus 18F-FDG-PET/CT in patients with head and neck cancer. AJNR Am J Neuroradiol 35:1970–1975

    Article  CAS  PubMed  Google Scholar 

  3. Partovi S, Robbin MR, Steinbach OC et al (2014) Initial experience of MR/PET in a clinical cancer center. J Magn Reson Imaging 39:768–780

    Article  PubMed  Google Scholar 

  4. Varoquaux A, Rager O, Lovblad KO et al (2013) Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 40:842–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi SH, Paeng JC, Sohn CH et al (2011) Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med 52:1056–1062

    Article  PubMed  Google Scholar 

  6. Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M (2014) FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5:585–602

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang XY, Sun YS, Tang L, Xue WC, Zhang XP (2011) Correlation of diffusion-weighted imaging data with apoptotic and proliferation indexes in CT26 colorectal tumor homografts in balb/c mouse. J Magn Reson Imaging 33:1171–1176

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Ma L, Lou X, Zhou Z (2010) Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading. J Magn Reson Imaging 31:1331–1338

    Article  PubMed  Google Scholar 

  9. Thoeny HC, De Keyzer F, King AD (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263:19–32

    Article  PubMed  Google Scholar 

  10. Driessen JP, Caldas-Magalhaes J, Janssen LM et al (2014) Diffusion-weighted MR imaging in laryngeal and hypopharyngeal carcinoma: association between apparent diffusion coefficient and histologic findings. Radiology 272:456–463

    Article  PubMed  Google Scholar 

  11. Roh JL, Pae KH, Choi SH et al (2007) 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol 33:790–795

    Article  PubMed  Google Scholar 

  12. Machtay M, Natwa M, Andrel J et al (2009) Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck 31:195–201

    Article  PubMed  Google Scholar 

  13. Hatakenaka M, Shioyama Y, Nakamura K et al (2011) Apparent diffusion coefficient calculated with relatively high b-values correlates with local failure of head and neck squamous cell carcinoma treated with radiotherapy. AJNR Am J Neuroradiol 32:1904–1910

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Loevner L, Quon H et al (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinoma of the head and neck. Clin Cancer Res 15:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambrecht M, Van Calster B, Vandecaveye V et al (2014) Integrating pretreatment diffusion weighted MRI into a multivariable prognostic model for head and neck squamous cell carcinoma. Radiother Oncol 110:429–434

    Article  PubMed  Google Scholar 

  16. Nakajo M, Nakajo M, Kajiya Y et al (2012) FDG PET/CT and diffusion-weighted imaging of head and neck squamous cell carcinoma: comparison of prognostic significance between primary tumor standardized uptake value and apparent diffusion coefficient. Clin Nucl Med 37:475–480

    Article  PubMed  Google Scholar 

  17. King AD, Mo FK, Yu KH et al (2010) Squamous cell carcinoma of the head and neck: diffusion-weighted MR imaging for prediction and monitoring of treatment response. Eur Radiol 20:2213–2220

    Article  PubMed  Google Scholar 

  18. King AD, Chow KK, Yu KH et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 266:531–538

    Article  PubMed  Google Scholar 

  19. Partovi S, Kohan AA, Zipp L et al (2014) Hybrid PET/MR imaging in two sarcoma patients - clinical benefits and implications for future trials. Int J Clin Exp Med 7:640–648

    PubMed  PubMed Central  Google Scholar 

  20. Boellaard R, Delgado-Bolton R, Oyen WJ et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

    Article  CAS  PubMed  Google Scholar 

  21. Petralia G, Bonello L, Summers P et al (2011) Intraobserver and interobserver variability in the calculation of apparent diffusion coefficient (ADC) from diffusion-weighted magnetic resonance imaging (DW-MRI) of breast tumours. Radiol Med 116:466–476

    Article  CAS  PubMed  Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  23. Rorden C (2012) dcm2nii ver 12 12. http://www.mccauslandcenter.sc.edu/mricro/mricron. Accessed 15 Sep 2015

  24. Zhang B, Geng J, Nie F, Li X (2015) Primary tumor standardized uptake value predicts survival in head and neck squamous cell carcinoma. Oncol Res Treat 38:45–48

    Article  CAS  PubMed  Google Scholar 

  25. Minn H, Lapela M, Klemi PJ et al (1997) Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 38:1907–1911

    CAS  PubMed  Google Scholar 

  26. Torizuka T, Tanizaki Y, Kanno T et al (2009) Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. Am J Roentgenol 192:156–160

    Article  Google Scholar 

  27. Minn H, Clavo AC, Grenman R et al (1995) In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous cell carcinoma of the head and neck. J Nucl Med 36:252–258

    CAS  PubMed  Google Scholar 

  28. Takahashi Y, Oriuchi N, Otake H, Endo K, Murase K (2008) Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners. Ann Nucl Med 22:543–548

    Article  PubMed  Google Scholar 

  29. Chu KP, Murphy JD, La TH et al (2012) Prognostic value of metabolic tumor volume and velocity in predicting head-and-neck cancer outcomes. Int J Radiat Oncol Biol Phys 83:1521–1527

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hoang JK, Das SK, Choudhury KR, Yoo DS, Brizel DM (2013) Using FDG-PET to measure early treatment response in head and neck squamous cell carcinoma: quantifying intrinsic variability in order to understand treatment-induced change. AJNR Am J Neuroradiol 34:1428–1433

    Article  CAS  PubMed  Google Scholar 

  31. Kolff-Gart AS, Pouwels PJ, Noij DP et al (2015) Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. AJNR Am J Neuroradiol 36:384–390

    Article  CAS  PubMed  Google Scholar 

  32. Becker M, Zaidi H (2014) Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol 87:20130677

    Article  PubMed  PubMed Central  Google Scholar 

  33. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:101–125

    Article  CAS  Google Scholar 

  34. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  35. Brizel DM, Sibley GS, Prosnitz LR et al (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:259–285

    Article  Google Scholar 

  36. Stadler P, Becker A, Feldmann HJ et al (1999) Influence of the hypoxic subvolume on the survival of the patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749–754

    Article  CAS  PubMed  Google Scholar 

  37. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32:2–16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang K, Ma W, Wang J et al (2012) Tumor-stroma ratio is an independent predictor for survival in esophageal squamous cell carcinoma. J Thorac Oncol 7:1457–1461

    Article  PubMed  Google Scholar 

  39. De Kruif EM, van Nes JG, van de Velde CJ et al (2011) Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125:687–696

    Article  Google Scholar 

  40. Huibers A, Tollenaar RA, v Pelt GW et al (2013) The proportion of tumor-stroma as strong prognosticator for stage II and stage III colon cancer patients: validation in the VICTOR trial. Ann Oncol 24:179–185

    Article  Google Scholar 

  41. Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinoma. J Cancer 4:66–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neesse A, Michl P, Frese KK et al (2011) Stromal biology and therapy in pancreatic cancer. Gut 60:861–868

    Article  PubMed  Google Scholar 

  43. Mueller MM, Fusening NE (2004) Friends or foes - bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  44. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–44

    Article  CAS  PubMed  Google Scholar 

  45. Maeda M, Kato H, Sakuma H, Maier SE, Takeda K (2005) Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck. AJNR Am J Neuroradiol 26:1186–1192

    PubMed  Google Scholar 

  46. Wang J, TakashimaS TF et al (2001) Head and neck lesions: characterization with diffusion-weighted echoplanar MR imaging. Radiology 220:621–630

    Article  CAS  PubMed  Google Scholar 

  47. Reichert M, Ai T, Morelli JN, Nittka M, Attenberger U, Runge VM (2015) Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting. Br J Radiol 88:20140601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Lorenzo Preda. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Sara Raimondi kindly provided statistical advice for this manuscript. Written informed consent was obtained from all subjects (patients) in this study. Institutional review board approval was not required because this study was a retrospective analysis of data acquired during clinical practice and all the patients had signed an informed consent to the use of clinical and imaging data for scientific and/or educational purposes.

Methodology: observational study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Conte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 6

(DOCX 4167 kb)

Fig. 7

(DOCX 4942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preda, L., Conte, G., Bonello, L. et al. Combining standardized uptake value of FDG-PET and apparent diffusion coefficient of DW-MRI improves risk stratification in head and neck squamous cell carcinoma. Eur Radiol 26, 4432–4441 (2016). https://doi.org/10.1007/s00330-016-4284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4284-8

Keywords

Navigation