Skip to main content
Log in

Imaging correlates of neural control of ocular movements

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of oculomotor movements is maintenance of clear images on the retina. Beyond this oversimplification, it requires several different types of ocular movements and reflexes to focus objects of interest to the fovea—the only portion of retina capable of sharp and clear vision. The different movements and reflexes that execute this task are the saccades, smooth pursuit movements, fixation, accommodation, and the optokinetic and vestibulo-ocular reflexes. Many different centres in the cerebrum, cerebellum, brainstem and thalami, control these movements via different pathways. At the outset, these mechanisms appear dauntingly complex to a radiologist. However, only a little effort could make it possible to understand these neural controls and empower the reading session. The following review on ocular movements and their neural control will enable radiologists and clinicians to correlate lesions with clinical deficits effectively without being swamped by exhaustive detail.

Key Points

Knowledge of cortical and subcortical areas controlling ocular movements is important.

Understanding of neural control of ocular movements makes a good foundation.

Awareness of anatomic areas controlling ocular movements helps in clinico-radiologic correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Goldberg ME (2000) The control of gaze. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 782–800

    Google Scholar 

  2. Pierrot-Deseilligny C, Muri RM, Ploner CJ et al (2003) Cortical control of ocular saccades in humans: a model for motricity. Prog Brain Res 142:3–17

    Article  CAS  PubMed  Google Scholar 

  3. Enderle JD (2002) Neural control of saccades. Prog Brain Res 140:21–49

    Article  PubMed  Google Scholar 

  4. Buttner U, Buttner-Ennever JA (2006) Present concepts of oculomotor organization. Prog Brain Res 151:1–42

    Article  CAS  PubMed  Google Scholar 

  5. Ventre-Dominey J (2014) Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways. Front Integr Neurosci 8:1–13

    Article  Google Scholar 

  6. Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 121:1479–1495

    Article  PubMed  Google Scholar 

  7. Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965

    CAS  PubMed  Google Scholar 

  8. Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zee DS, Tusa RJ, Herdman SJ et al (1987) Effects of occipital lobectomy upon eye movements in primate. J Neurophysiol 58:883–907

    CAS  PubMed  Google Scholar 

  10. Verhagen W, Huygens P, Mulleners W (1997) Lack of optokinetic nystagmus and visual motion perception in acquired cortical blindness. Neuroophthalmology 17:211–216

    Article  Google Scholar 

  11. Naito Y, Tateya I, Hirano S et al (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578

    Article  PubMed  Google Scholar 

  12. Monteiro MLR, Curi ALL, Pereira A et al (2003) Persistent accommodative spasm after severe head trauma. Br J Ophthalmol 87:240–251

    Article  Google Scholar 

  13. Alvarez TL, Alkan Y, Gohel S et al (2010) Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vis Res 50:2163–2175

    Article  PubMed  Google Scholar 

  14. Ohtsuka K, Maekawa H, Takeda M et al (1998) Accommodation and convergence insufficiency with left middle cerebral artery occlusion. Am J Ophthalmol 106:60–64

    Article  Google Scholar 

  15. Lindner K, Hitzenberger P, Drlicek M et al (1992) Dissociated unilateral convergence paralysis in a patient with thalamotectal haemorrhage. J Neurol Neurosurg Psychiatry 55:731–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herman P (1975) The Behr pupil revisited. Anisocoria after cerebrovascular accidents. Stroke 6:697–702

    Article  CAS  PubMed  Google Scholar 

  17. Kimura S, Shoumura K, Ichinohe N et al (1992) Neural mechanisms of pupillary abnormality following thalamic lesions: experimental lesion and stimulation studies in cats, and consideration of pupillary findings in thalamic vascular lesions. J Hirnforsch 33:565–583

    CAS  PubMed  Google Scholar 

  18. Milea D, Lobel E, Lehericy S et al (2001) Functional MRI mapping of parietal and cingular activity during voluntary saaccades. Soc Neurosci Abstr 71:27

    Google Scholar 

  19. Trillenberg P, Sprenger A, Petersen D et al (2007) Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia. Neuroimage 36:T69–T76

    Article  PubMed  Google Scholar 

  20. Singer OC, Humpich MC, Laufs H et al (2006) Conjugate eye deviation in acute stroke incidence, hemispheric asymmetry, and lesion pattern. Stroke 37:2726–2732

    Article  PubMed  Google Scholar 

  21. Pierrot-Deseilligny C, Rivaud S, Gaymard B et al (1991) Cortical control of reflexive visually-guided saccades. Brain 114:1473–1485

    Article  PubMed  Google Scholar 

  22. Schlag J, Schlag-Rey M (1992) Neurophysiology of eye movements. Adv Neurol 57:135–147

    CAS  PubMed  Google Scholar 

  23. Clark JM, Albers GW (1995) Vertical gaze Palsies from medial thalamic infarctions without midbrain involvement. Stroke 26:1467–1470

    Article  CAS  PubMed  Google Scholar 

  24. Iijima M, Hirata A, Tadano Y et al (1994) A case of vertical gaze palsy associated with a unilateral infarct in the thalamo-mesencephalic junction on MR imaging. Rinsho Shinkeigaku 34:356–360

    CAS  PubMed  Google Scholar 

  25. Moriyasu H, Hashimoto Y, Miyashita T et al (1991) Supranuclear vertical gaze palsy and convergence nystagmus caused by unilateral riMLF lesion. Rinsho Shinkeigaku 31:1235–1237

    CAS  PubMed  Google Scholar 

  26. Kremmyda O, Rettinger N, Strupp N (2009) Teaching video neuroimages: unilateral RIMLF lesion: pathologic eye movement torsion indicates lesion side and site. Neurology 73:e92–e93

    Article  CAS  PubMed  Google Scholar 

  27. Moschovakis AK, Scudde CA, Highstein SM (1991) Structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J Neurophysiol 65:203–217

    CAS  PubMed  Google Scholar 

  28. McCrea RA, Strassman A, Highstei SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594

    Article  CAS  PubMed  Google Scholar 

  29. Kokkoroyannis T, Scudder CA, Balaban CD et al (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal I. Efferent projections. J Neurophysiol 75:725–739

    CAS  PubMed  Google Scholar 

  30. Chimoto S, Iwamoto Y, Yoshida K (1999) Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. J Neurophysiol 81:1199–1211

    CAS  PubMed  Google Scholar 

  31. Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10:159–187

    Article  CAS  PubMed  Google Scholar 

  32. Helmchen C, Rambold H, Fuhry L et al (1998) Deficits in vertical and torsional eye movements after uni and bilateral muscimol inactivation of the interstitial nucleus of Cajal (IC) of the alert monkey. Exp Brain Res 119:436–452

    Article  CAS  PubMed  Google Scholar 

  33. Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Front Neurol 2;53:1–15

  34. Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–202

    Article  CAS  PubMed  Google Scholar 

  35. Baier P, Dieterich SM (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124

    Article  CAS  PubMed  Google Scholar 

  36. Frohman TC, Galetta S, Fox R et al (2008) Pearls & Oy-sters: the medial longitudinal fasciculus in ocular motor physiology. Neurology 70:e57–e67

    Article  CAS  PubMed  Google Scholar 

  37. Ropper AH, Samuels MA, Klein JP (2014) Chapter 14. Disorders of ocular movement and pupillary function. In: Ropper AH, Samuels MA, Klein JP (eds) Adams & Victor's principles of neurology, 10th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Suyash Mohan. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was not required because it is not original research. Written informed consent was not required for this study because no subjects were involved. Approval from the institutional animal care committee was not required because the study is not on animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, M., Ulmer, J.L., Chandra, T. et al. Imaging correlates of neural control of ocular movements. Eur Radiol 26, 2193–2205 (2016). https://doi.org/10.1007/s00330-015-4004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4004-9

Keywords

Navigation