Skip to main content
Log in

Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique.

Methods

Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement.

Results

Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision.

Conclusions

Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies.

Key Points

4D flow MRI, a non-invasive, non-contrast imaging technique, is feasible after TIPS.

Provides visualization and quantification of hepatic arterial, portal venous, collateral and TIPS haemodynamics.

Better understanding of liver blood flow changes after TIPS and patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

ET-1:

Endothelin-1

TIPS:

Transjugular intrahepatic portosystemic shunt

Doppler US:

Doppler Ultrasound

MRI:

Magnetic resonance imaging

4D flow MRI:

Time-resolved (CINE) phase contrast (PC) gradient echo sequence with 3-directional and 3-dimensional velocity mapping

IVC:

Inferior vena cava

MELD:

Model for End-Stage Liver Disease

GRAPPA:

Generalized auto-calibrating partially parallel acquisitions

PC-MRA:

3D phase-contrast MR angiogram

HVPG:

Hepatic venous pressure gradient

References

  1. D’Amico G, Garcia-Tsao G (2001) Diagnosis of portal hypertension. How and when? In: de Franchis R (ed) Portal hypertension. Proceedings of the third Baveno international consensus workshop on definitions, methodology and therapeutic strategies. Blackwell Science, Oxford (UK), pp 36–64

    Google Scholar 

  2. Bradley SE, Ingelfinger FJ, Bradley GP (1952) Hepatic circulation in cirrhosis of the liver. Circulation 5:419–429

    Article  CAS  PubMed  Google Scholar 

  3. Moreno AH, Burchell AR, Rousselot LM, Panke WF, Slafsky F, Burke JH (1967) Portal blood flow in cirrhosis of the liver. J Clin Investig 46:436–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gatta A, Bolognesi M, Merkel C (2008) Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol Asp Med 29:119–129

    Article  CAS  Google Scholar 

  5. Wiest R (2007) Splanchnic and systemic vasodilation: the experimental models. J Clin Gastroenterol 41(Suppl 3):S272–S287

    Article  PubMed  Google Scholar 

  6. Groszmann RJ, Atterbury CE (1982) The pathophysiology of portal hypertension: a basis for classification. Semin Liver Dis 2:177–186

    Article  CAS  PubMed  Google Scholar 

  7. Benoit JN, Womack WA, Hernandez L, Granger DN (1985) "Forward" and "backward" flow mechanisms of portal hypertension. Relative contributions in the rat model of portal vein stenosis. Gastroenterology 89:1092–1096

    CAS  PubMed  Google Scholar 

  8. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J (1988) Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8:1151–1157

    Article  CAS  PubMed  Google Scholar 

  9. Vallance P, Moncada S (1991) Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet 337:776–778

    Article  CAS  PubMed  Google Scholar 

  10. Iwakiri Y, Groszmann RJ (2006) The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43:S121–S131

    Article  CAS  PubMed  Google Scholar 

  11. Stankovic Z, Frydrychowicz A, Csatari Z et al (2010) MR-based visualization and quantification of three-dimensional flow characteristics in the portal venous system. J Magn Reson Imaging 32:466–475

    Article  PubMed  Google Scholar 

  12. Frydrychowicz A, Landgraf BR, Niespodzany E et al (2011) Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: a feasibility study in portal hypertension. J Magn Reson Imaging. doi:10.1002/jmri.22712

    Google Scholar 

  13. Stankovic Z, Csatari Z, Deibert P et al (2012) Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology 262:862–873

    Article  PubMed  Google Scholar 

  14. Roldan-Alzate A, Frydrychowicz A, Niespodzany E et al (2013) In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging 37:1100–1108

    Article  PubMed Central  PubMed  Google Scholar 

  15. Stankovic Z, Csatari Z, Deibert P et al (2013) A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur J Gastroenterol Hepatol 25:669–675

    Article  PubMed  Google Scholar 

  16. Stankovic Z, Jung B, Collins J et al (2013) Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med. doi:10.1002/mrm.24939

    Google Scholar 

  17. Landgraf BR, Johnson KM, Roldan-Alzate A, Francois CJ, Wieben O, Reeder SB (2014) Effect of temporal resolution on 4D flow MRI in the portal circulation. J Magn Reson Imaging 39:819–826

    Article  PubMed Central  PubMed  Google Scholar 

  18. Stankovic Z, Blanke P, Markl M (2012) Usefulness of 4D MRI flow imaging to control TIPS function. Am J Gastroenterol 107:327–328

    Article  PubMed  Google Scholar 

  19. Lum DP, Johnson KM, Paul RK et al (2007) Transstenotic pressure gradients: measurement in swine – retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology 245:751–760

    Article  PubMed  Google Scholar 

  20. Bley TA, Johnson KM, Francois CJ et al (2011) Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology 261:266–273

    Article  PubMed Central  PubMed  Google Scholar 

  21. Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831

    Article  PubMed  Google Scholar 

  22. Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow imaging with MRI. Cardiovasc Diagn Ther 4:173–192

    PubMed Central  PubMed  Google Scholar 

  23. Bernstein MA, Zhou XJ, Polzin JA et al (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308

    Article  CAS  PubMed  Google Scholar 

  24. Bock J, Kreher BW, Hennig J, Markl M (2007) Optimized pre-processing of time-resolved 2D and 3D Phase Contrast MRI data15th Annual Meeting of ISMRM. Abstract 3138, Berlin, Germany

  25. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3:521–530

    Article  CAS  PubMed  Google Scholar 

  26. Bock J, Frydrychowicz A, Stalder AF et al (2010) 4D phase contrast MRI at 3T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63:330–338

    Article  PubMed  Google Scholar 

  27. Buonocore MH (1998) Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med 40:210–226

    Article  CAS  PubMed  Google Scholar 

  28. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 1932:1–55

    Google Scholar 

  29. Haag K (1996) Duplex sonographic evaluation before and after TIPS: monitoring of shunt function. In: Transjugular intrahepatic portosystemic shunts. Edited by Conn HO, Palmaz JC, Rösch J, Rössle M. New York, Tokio: Igaku-Shoin 1996:319–30

  30. Foshager MC, Ferral H, Nazarian GK, Castaneda-Zuniga WR, Letourneau JG (1995) Duplex sonography after transjugular intrahepatic portosystemic shunts (TIPS): normal hemodynamic findings and efficacy in predicting shunt patency and stenosis. AJR Am J Roentgenol 165:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  32. Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O (2008) Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 60:1329–1336

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rossle M (2013) TIPS: 25 years later. J Hepatol 59:1081–1093

    Article  PubMed  Google Scholar 

  34. Patel NH, Sasadeusz KJ, Seshadri R et al (2001) Increase in hepatic arterial blood flow after transjugular intrahepatic portosystemic shunt creation and its potential predictive value of postprocedural encephalopathy and mortality. J Vasc Interv Radiol 12:1279–1284

    Article  CAS  PubMed  Google Scholar 

  35. Nanashima A, Shibasaki S, Sakamoto I et al (2006) Clinical evaluation of magnetic resonance imaging flowmetry of portal and hepatic veins in patients following hepatectomy. Liver Int 26:587–594

    Article  CAS  PubMed  Google Scholar 

  36. Harloff A, Albrecht F, Spreer J et al (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61:65–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Michael Markl. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding by German Research Foundation (DFG) under Award Number STA 1288/ 2-1. Supported by the RSNA Research & Education Foundation, Seed Grant #1218 (JDC). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, case-control, multicentre study. We thank Adriana Komancsek, Marie Wasielewski and Maria Carr for their technical contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Stankovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankovic, Z., Rössle, M., Euringer, W. et al. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol 25, 2634–2640 (2015). https://doi.org/10.1007/s00330-015-3663-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3663-x

Keywords

Navigation