Skip to main content
Log in

Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis.

Methods

We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO2) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical–histological data were measured by correlation coefficients.

Results

Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = −0.51, p = 0.02) and excellently on day 28 (r = −0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees.

Conclusion

The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields.

Key points

BOLD and DCE MRI detect interval perisynovial changes in a rabbit knee

BOLD and DCE MRI act as surrogate markers of physiologic changes in arthritis

BOLD MRI signal represents oxygen extraction compared with intra-articular PO 2

DCE MRI measurements estimate physiologic periarticular vascular properties

In rabbit knees with acute arthritis, BOLD/DCE MRI highly correlated with histological scores

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BOLD:

Blood-oxygen-level-dependent

T:

Tesla

TE:

Echo time

TR:

Repetition time

NEX:

Number of averages

ROI:

Regions of interest

Diff_on_off t score:

Difference of on-and-off signal intensities

PT %:

Percentage of activated voxels

pos_neg:

Positive negative

References

  1. Stevens CR, Blake DR, Merry P, Revell PA, Levick JR (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34:1508–1513

    Article  PubMed  CAS  Google Scholar 

  2. Edmonds SE, Blake DR, Morris CJ, Winyard PG (1993) An imaginative approach to synovitis-the role of hypoxic reperfusion damage in arthritis. J Rheumatol Suppl 37:26–31

    PubMed  CAS  Google Scholar 

  3. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  4. Doria AS, Crawley A, Gahunia H, Moineddin R, Rayner T, Tassos V Zhong A, Pritzker K, Mendes M, Jong R, Salter RB (2012) Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis. Pediatr Radiol 42:63–75

  5. Noseworthy MD, Bulte DP, Alfonsi J (2003) BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol 7:307–315

    Article  PubMed  Google Scholar 

  6. Doria AS, Dick P (2005) Region-of-interest-based analysis of clustered BOLD MRI data in experimental arthritis. Acad Radiol 12:841–852

    Article  PubMed  Google Scholar 

  7. dos Santos EA, Li LP, Ji L, Prasad PV (2007) Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol 42:157–162

    Article  PubMed  PubMed Central  Google Scholar 

  8. Terrier F, Revel D, Reinhold CE, Levine J, Grodd W, Genant HK et al (1986) Contrast-enhanced MRI of periarticular soft-tissue changes in experimental arthritis of the rat. Magn Reson Med 3:385–396

    Article  PubMed  CAS  Google Scholar 

  9. Doria AS, Noseworthy M, Oakden W, Moineddin R, Rayner T, Tassos V et al (2006) Dynamic contrast-enhanced MRI quantification of synovium microcirculation in experimental arthritis. AJR Am J Roentgenol 186:1165–1171

    Article  PubMed  Google Scholar 

  10. Motohashi N, Nakamichi Y, Mori I, Nishikawa H, Umemoto J (1990) Concentration and degradation of hyaluronic acid in knee synovial fluid from carrageenin-induced rabbit arthritis. Chem Pharm Bull (Tokyo) 38:1953–1956

    Article  CAS  Google Scholar 

  11. Doria AS, Wang C, Zhong A, Rayner T, Belik J, Moineddin R et al (2011) Reliability and convergent validity of different BOLD MRI frameworks for data acquisition in experimental arthritis. Acad Radiol 18:615–625

    Article  PubMed  Google Scholar 

  12. Jasin HE (1998) Immunochemical techniques - chemotaxis and inflammation, 1st edn. Academic Press Inc., San Diego

    Google Scholar 

  13. Kashiwagi N, Nakano M, Saniabadi AR, Adachi M, Yoshikawa T (2002) Anti-inflammatory effect of granulocyte and monocyte adsorption apheresis in a rabbit model of immune arthritis. Inflammation 26:199–205

    Article  PubMed  Google Scholar 

  14. Di Sabato G (1988) Methods in Enzymology. Immunochemical techniques. Academic Press Inc, San Diego

    Google Scholar 

  15. Glover GH, Lai S (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn Reson Med 39:361–368

    Article  PubMed  CAS  Google Scholar 

  16. Chan MW, Nathanael G, Kis A, Amirabadi A, Zhong A, Rayner T, Weiss R, Detzler G, Jong R, Gahunia H, Moineddin R, Crawley A, Doria AS (2014) Systematic protocol for assessment of the validity of BOLD MRI in a rabbit model of inflammatory arthritis at 1.5 tesla. Pediatr Radiol 44(5):566–575

  17. Isebaert S, De Keyzer F (2012) Haustermans, Lerut E, Roskams T, Roebben I, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 81:e217–e222

    Article  PubMed  Google Scholar 

  18. Schlossbauer T, Sourbron S, Scholz A, Mosner M, Kahlert S, Böhm H et al (2010) Dynamic breast MRI in the course of neoadjuvant chemotherapy: standardized evaluation of tumor size and enhancement parameters in correlation to different histopathologic characteristics. Acad Radiol 17:441–449

    Article  PubMed  Google Scholar 

  19. Braun RD, Lanzen JL, Snyder SA, Dewhirst MW (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280:H2533–H2544

    PubMed  CAS  Google Scholar 

  20. Ceponis A, Waris E, Monkkonen J, Laasonen L, Hyttinen M, Solovieva SA et al (2001) Effects of low-dose, noncytotoxic, intra-articular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits. Arthritis Rheum 44:1908–1916

    Article  PubMed  CAS  Google Scholar 

  21. Dawson J, Engelhardt P, Kastelic T, Cheneval D, MacKenzie A, Ramage P (1999) Effects of soluble interleukin-1 type II receptor on rabbit antigen-induced arthritis: clinical, biochemical and histological assessment. Rheumatology (Oxford) 38:401–406

    Article  CAS  Google Scholar 

  22. Koizumi F, Matsuno H, Wakaki K, Ishii Y, Kurashige Y, Nakamura H (1999) Synovitis in rheumatoid arthritis: scoring of characteristic histopathological features. Pathol Int 49:298–304

    Article  PubMed  CAS  Google Scholar 

  23. Oehler S, Neureiter D, Meyer-Scholten C, Aigner T (2002) Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol 20:633–640

    PubMed  CAS  Google Scholar 

  24. Streiner DL, Norman GR (2001) Reliability. In: Streiner DL, Norman GR (eds) Health measurement scales: A practical guide to their development and use. Oxford University Press, Oxford, pp 104–127

    Google Scholar 

  25. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, pp 404–408

    Google Scholar 

  26. Lewick JR (1990) Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 17:579–581

    Google Scholar 

  27. Falchuk KH, Goetzl EJ, Kulka JP (1970) Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am J Med 49:223–231

    Article  PubMed  CAS  Google Scholar 

  28. Wallis WJ, Simkin PA, Nelp WB (1985) Low synovial clearance of iodide provides evidence of hypoperfusion in chronic rheumatoid synovitis. Arthritis Rheum 28:1096–1104

    Article  PubMed  CAS  Google Scholar 

  29. Nasui OC, Nathanael G, Miller E, Belik J, Crawley A, Weiss R, et al (2012) Responsiveness of BOLD MRI to Short-Term Temperature Changes in Rabbit Knees with Inflammatory Arthritis. Rheumatology (Current Research) ISSN: 2161-1149 (Suppl 2):1-9

  30. Dollberg S, Atherton H, Hoath S (1998) Changes in skin blood flow over the foot with warming of the contralateral heel. Acta Paediatr 87:416–418

    Article  PubMed  CAS  Google Scholar 

  31. Blackmon LR (1968) Treating neonatal vasospasm. Lancet 2:639

    Article  PubMed  CAS  Google Scholar 

  32. Cooper RA, Carrington BM, Loncaster JA et al (2000) Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59

    Article  PubMed  CAS  Google Scholar 

  33. Feldman SC, Chu D, Schulder M et al (2009) The blood oxygen level-dependent functional MR imaging signal can be used to identify brain tumors and distinguish them from normal tissue. AJNR Am J Neuroradiol 30:389–395

    Article  PubMed  CAS  Google Scholar 

  34. Winter JD, Estrada M, Cheng HLM (2011) Normal tissue quantitative T1 and T2* MRI relaxation time responses to hypercapnic and hyperoxic gases. Acad Radiol 18:1159–1167

    Article  PubMed  Google Scholar 

  35. O'Connor JP, Naish JH, Jackson A, Waterton JC, Watson Y, Cheung S et al (2009) Comparison of normal tissue R1 and R2* modulation by oxygen and carbogen. Magn Reson Med 61:75–83

    Article  PubMed  Google Scholar 

  36. Doria AS, Karshafian R, Moineddin R, Mohanta A, Zhong A, Mendes M et al (2006) Contrast-enhanced triggered harmonic sonography for assessment of periarticular hemodynamic changes in experimental arthritis. Pediatr Radiol 36:1242–1251

    Article  PubMed  Google Scholar 

  37. Lyng H, Vorren AO, Sundfør K, Taksdal I, Lien HH, Kaalhus O et al (2001) Assessment of tumor oxygenation in human cervical carcinoma by use of dynamic Gd-DTPA-enhanced MR imaging. J Magn Reson Imaging 14:750–756

    Article  PubMed  CAS  Google Scholar 

  38. Hawighorst H, Knapstein PG, Knopp MV, Weikel W, Brix G, Zuna I et al (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602

    PubMed  CAS  Google Scholar 

  39. Wolfsberger S, Ba-Ssalamah PK, Mlynarik V, Czech T, Knosp E et al (2004) Application of three-Tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J Neurosurg 100:278–286

    Article  PubMed  Google Scholar 

  40. Bereczki D, Wei L, Otsuka T, Acuff V, Pettigrew K, Patlak C et al (1993) Hypoxia increases velocity of blood flow through parenchymal microvascular systems in rat brain. J Cereb Blood Flow Metab 13:475–486

    Article  PubMed  CAS  Google Scholar 

  41. Shockley RP, LaManna JC (1988) Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res 454:170–178

    Article  PubMed  CAS  Google Scholar 

  42. Evans RG, Goddard D, Eppel GA, O'Connor PM (2011) Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption. Clin Exp Pharmacol Physiol 38:247–254

    Article  PubMed  CAS  Google Scholar 

  43. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV (2008) Obesity in C57BL/6 J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 3:451–463

  44. Salle D, Esposito F, Elefante A, Scarabino T, Volpicelli A, Cirillo S et al (2003) High field functional MRI. Eur J Radiol 48:138–145

    Article  PubMed  Google Scholar 

  45. Doria AS, Crawley A, Gahunia H, Moineddin R, Rayner T, Tassos V et al (2012) Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis. Pediatr Radiol 42(1):63–75

Download references

Acknowledgments

The scientific guarantor of this publication is Andrea S. Doria. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by Radiological Society of North America – Seed Grant. One of the authors, Rahim Moineddin, has significant statistical expertise. Institutional Review Board approval was obtained.

Written informed consent was waived by the Institutional Review Board. Approval from the institutional animal care committee was obtained. Some study subjects or cohorts have been previously reported in Pediatric Radiology [45]. In the current study, arthritic and corresponding contralateral knee joints in 21 rabbits and 18 nonarthritic (control) knee joints in 30 untreated rabbits were imaged using BOLD MRI at 1.5 T at baseline and on days 1, 14, and 28 after arthritis induction. We tested: (1) the association between BOLD MRI measurements and intra-articular PO2 and blood flow measurements in knees of rabbits with inflammatory arthritis (criterion validity, objective #1), and (2) the association between BOLD MRI measurements, clinical (joint diameters), and histologic constructs (convergent validity, objective #2).

In the study titled “Systematic protocol for assessment of the validity of BOLD MRI in a rabbit model of inflammatory arthritis at 1.5 Tesla” recently accepted for publication in Pediatric Radiology, data from 21 arthritic and 21 contralateral knees, which served as internal controls, were analyzed. In addition, nine noninjected rabbits, comprising 18 noninjected knees, were used as external controls. In this study we optimized BOLD MRI reading parameters in an inflammatory arthritis rabbit model, including the most diagnostically accurate BOLD signal threshold (0.01 vs 0.2) method of measuring the BOLD signal (i.e., percentage of activated voxels vs difference between on and off signal intensities), and type of activations (positive, negative, and positive_negative). As previously mentioned, this study was necessary for reduction of parameters for interpretation of BOLD MRI and to support the methodology of the validation study.

Methodology: experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea S. Doria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasui, O.C., Chan, M.W., Nathanael, G. et al. Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla. Eur Radiol 24, 2766–2778 (2014). https://doi.org/10.1007/s00330-014-3331-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3331-6

Keywords

Navigation