Skip to main content
Log in

Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate structural brain changes in inflammatory bowel disease (IBD).

Methods

Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images.

Results

VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p < 0.05). TBSS showed decreased axial diffusivity (AD) in the right corticospinal tract and the right superior longitudinal fasciculus in patients compared with controls. A larger number of WMHIs was observed in patients (p < 0.05).

Conclusions

Patients with IBD show an increase in WMHIs and GM atrophy, probably related to cerebral vasculitis and ischaemia. Decreased AD in major white matter tracts could be a secondary phenomenon, representing Wallerian degeneration.

Key Points

There is evidence of central nervous system involvement in IBD.

Diffusion tensor imaging detects microstructural brain abnormalities in IBD.

Voxel based morphometry reveals brain atrophy in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IBD:

inflammatory bowel disease

UC:

ulcerative colitis

CD:

Crohn’s disease

CNS:

central nervous system

WMHIs:

white-matter hyperintensities

VBM:

voxel-based morphometry

GM:

grey matter

WM:

white matter

DTI:

diffusion tensor imaging

FA:

fractional anisotropy

MD:

mean diffusivity

RD:

radial diffusivity

AD:

axial diffusivity

TBSS:

tract-based spatial statistics

References

  1. Danzi JT (1988) Extraintestinal manifestations of idiopathic inflammatory bowel disease. Arch Intern Med 148:297–302

    Article  CAS  PubMed  Google Scholar 

  2. Greenstein AJ, Janowitz HD, Sachar DB (1976) The extra-intestinal complications of Crohn's disease and ulcerative colitis: a study of 700 patients. Medicine (Baltimore) 55:401–412

    Article  CAS  Google Scholar 

  3. Elsehety A, Bertorini TE (1997) Neurologic and neuropsychiatric complications of Crohn's disease. South Med J 90:606–610

    Article  CAS  PubMed  Google Scholar 

  4. Lossos A, River Y, Eliakim A, Steiner I (1995) Neurologic aspects of inflammatory bowel disease. Neurology 45:416–421

    Article  CAS  PubMed  Google Scholar 

  5. Scheid R, Teich N (2007) Neurologic manifestations of ulcerative colitis. Eur J Neurol 14:483–493

    Article  CAS  PubMed  Google Scholar 

  6. Diakou M, Kostadima V, Giannopoulos S, Zikou AK, Argyropoulou MI, Kyritsis AP (2011) Cerebral venous thrombosis in an adolescent with ulcerative colitis. Brain Dev 33:49–51

    Article  PubMed  Google Scholar 

  7. Gobbele R, Reith W, Block F (2000) Cerebral vasculitis as a concomitant neurological illness in Crohn's disease. Nervenarzt 71:299–304

    Article  CAS  PubMed  Google Scholar 

  8. Lam A, Borda IT, Inwood MJ, Thomson S (1975) Coagulation studies in ulcerative colitis and Crohn's disease. Gastroenterology 68:245–251

    CAS  PubMed  Google Scholar 

  9. Agostini A, Filippini N, Benuzzi F et al (2013) Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn's disease versus healthy controls. J Behav Med 36:477–487

    Article  PubMed  Google Scholar 

  10. Agostini A, Filippini N, Cevolani D et al (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17:1769–1777

    Article  PubMed  Google Scholar 

  11. Dancey CP, Attree EA, Stuart G, Wilson C, Sonnet A (2009) Words fail me: the verbal IQ deficit in inflammatory bowel disease and irritable bowel syndrome. Inflamm Bowel Dis 15:852–857

    Article  PubMed  Google Scholar 

  12. Geissler A, Andus T, Roth M et al (1995) Focal white-matter lesions in brain of patients with inflammatory bowel disease. Lancet 345:897–898

    Article  CAS  PubMed  Google Scholar 

  13. Agostini A, Benuzzi F, Filippini N et al (2013) New insights into the brain involvement in patients with Crohn's disease: a voxel-based morphometry study. Neurogastroenterol Motil 25:147–e182

    Article  CAS  PubMed  Google Scholar 

  14. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    Article  CAS  PubMed  Google Scholar 

  15. Pierpaoli C, Barnett A, Pajevic S et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  CAS  PubMed  Google Scholar 

  16. Astrakas LG, Argyropoulou MI (2010) Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr Radiol 40:1857–1867

    Article  PubMed  Google Scholar 

  17. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  18. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  19. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  20. Chen M, Lee G, Kwong LN, Lamont S, Chaves C (2012) Cerebral white matter lesions in patients with Crohn's disease. J Neuroimaging 22:38–41

    Article  CAS  PubMed  Google Scholar 

  21. Bryan RN, Manolio TA, Schertz LD et al (1994) A method for using MR to evaluate the effects of cardiovascular disease on the brain: the cardiovascular health study. AJNR Am J Neuroradiol 15:1625–1633

    CAS  PubMed  Google Scholar 

  22. Meguro K, Yamaguchi T, Hishinuma T et al (1993) Periventricular hyperintensity on magnetic resonance imaging correlated with brain ageing and atrophy. Neuroradiology 35:125–129

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt R, Fazekas F, Koch M et al (1995) Magnetic resonance imaging cerebral abnormalities and neuropsychologic test performance in elderly hypertensive subjects. A case-control study. Arch Neurol 52:905–910

    Article  CAS  PubMed  Google Scholar 

  24. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  25. Adamson C, Yuan W, Babcock L et al (2013) Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Inj 27:454–463

    Article  PubMed  Google Scholar 

  26. Padilla N, Junque C, Figueras F et al (2014) Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age. Brain Res 1545:1–11

    Article  CAS  PubMed  Google Scholar 

  27. Pievani M, Paternico D, Benussi L et al (2014) Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers. Alzheimers Dement. doi:10.1016/j.jalz.2013.09.009

    PubMed  Google Scholar 

  28. Zivadinov R, Shucard JL, Hussein S et al (2013) Multimodal imaging in systemic lupus erythematosus patients with diffuse neuropsychiatric involvement. Lupus 22:675–683

    Article  CAS  PubMed  Google Scholar 

  29. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722

    Article  PubMed  Google Scholar 

  30. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436

    Article  PubMed  Google Scholar 

  31. Scolding NJ, Wilson H, Hohlfeld R et al (2002) The recognition, diagnosis and management of cerebral vasculitis: a European survey. Eur J Neurol 9:343–347

    Article  CAS  PubMed  Google Scholar 

  32. Kieslich M, Errazuriz G, Posselt HG, Moeller-Hartmann W, Zanella F, Boehles H (2001) Brain white-matter lesions in celiac disease: a prospective study of 75 diet-treated patients. Pediatrics 108:E21

    Article  CAS  PubMed  Google Scholar 

  33. Tzarouchi LC, Tsifetaki N, Konitsiotis S et al (2011) CNS involvement in primary Sjogren Syndrome: assessment of gray and white matter changes with MRI and voxel-based morphometry. AJR Am J Roentgenol 197:1207–1212

    Article  PubMed  Google Scholar 

  34. Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC (1999) Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia 28:114–127

    Article  CAS  PubMed  Google Scholar 

  35. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Harrison NA, Brydon L, Walker C et al (2009) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66:415–422

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jones MP, Dilley JB, Drossman D, Crowell MD (2006) Brain-gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol Motil 18:91–103

    Article  CAS  PubMed  Google Scholar 

  38. Konsman JP, Kelley K, Dantzer R (1999) Temporal and spatial relationships between lipopolysaccharide-induced expression of Fos, interleukin-1beta and inducible nitric oxide synthase in rat brain. Neuroscience 89:535–548

    Article  CAS  PubMed  Google Scholar 

  39. Quan N, Banks WA (2007) Brain-immune communication pathways. Brain Behav Immun 21:727–735

    Article  CAS  PubMed  Google Scholar 

  40. Gondim FA, Brannagan TH 3rd, Sander HW, Chin RL, Latov N (2005) Peripheral neuropathy in patients with inflammatory bowel disease. Brain 128:867–879

    Article  CAS  PubMed  Google Scholar 

  41. Yesilova Z, Naharci I, Uygun A, Ulas HU, Dagalp K (2006) Motor axonal polyneuropathy in the course of ulcerative colitis: a case report. Turk J Gastroenterol 17:58–61

    PubMed  Google Scholar 

  42. Cabeza R, Nyberg L (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47

    Article  CAS  PubMed  Google Scholar 

  43. Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919

    Article  CAS  PubMed  Google Scholar 

  44. Herath P, Kinomura S, Roland PE (2001) Visual recognition: evidence for two distinctive mechanisms from a PET study. Hum Brain Mapp 12:110–119

    Article  CAS  PubMed  Google Scholar 

  45. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A 96:9379–9384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tranel D, Damasio H, Damasio AR (1997) A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35:1319–1327

    Article  CAS  PubMed  Google Scholar 

  47. Kawasaki H, Tsuchiya N, Kovach CK et al (2012) Processing of facial emotion in the human fusiform gyrus. J Cogn Neurosci 24:1358–1370

    Article  PubMed Central  PubMed  Google Scholar 

  48. Onitsuka T, Shenton ME, Salisbury DF et al (2004) Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry 161:1603–1611

    Article  PubMed Central  PubMed  Google Scholar 

  49. Boshuisen ML, Ter Horst GJ, Paans AM, Reinders AA, den Boer JA (2002) rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 52:126–135

    Article  PubMed  Google Scholar 

  50. Sim HB, Kang EH, Yu BH (2010) Changes in cerebral cortex and limbic brain functions after short-term paroxetine treatment in panic disorder: an [F]FDG-PET pilot study. Psychiatry Investig 7:215–219

    Article  PubMed Central  PubMed  Google Scholar 

  51. Kamali A, Flanders AE, Brody J, Hunter JV, Hasan KM (2014) Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 219:269–281

    Article  PubMed  Google Scholar 

  52. Ceccarelli A, Jackson JS, Tauhid S et al (2012) The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR Am J Neuroradiol 33:1579–1585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. de Souza JM, Domingues RC, Cruz LC Jr, Domingues FS, Iasbeck T, Gasparetto EL (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Maria I. Argyropoulou. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors (Loukas G. Astrakas) has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Argyropoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikou, A.K., Kosmidou, M., Astrakas, L.G. et al. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study. Eur Radiol 24, 2499–2506 (2014). https://doi.org/10.1007/s00330-014-3242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3242-6

Keywords

Navigation