Skip to main content
Log in

Apparent diffusion coefficient modifications in assessing gastro-oesophageal cancer response to neoadjuvant treatment: comparison with tumour regression grade at histology

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess changes in apparent diffusion coefficient (ΔADC) and volume (ΔV) after neoadjuvant treatment (NT), and tumour regression grade (TRG) in gastro-oesophageal cancers (GEC), and to discriminate responders from non-responders.

Methods

Thirty-two patients with biopsy-proven locally-advanced GEC underwent diffusion weighted magnetic resonance imaging (DWI) pre- and post-NT. Lesion ADC, volume, ΔADC and ΔV were calculated. TRG 1-2-3 patients were classified as R; TRG 4-5 as non-responders. ΔADC-TRG and ΔV-TRG correlations, pre-NT and post-NT ADC, ΔADC and ΔV cut-off values for responders and non-responders were calculated. Two readers measured mean tumour ADCs and interobserver variability was calculated. (Spearman’s and intraclass correlation coefficient [ICC]).

Results

The interobserver reproducibility was very good both for pre-NT (Spearman’s rho = 0.8160; ICC = 0.8993) and post-NT (Spearman’s rho = 0.8357; ICC = 0.8663). Responders showed lower pre-NT ADC (1.32 versus 1.63 × 10−3 mm2/s; P = 0.002) and higher post-NT ADC (2.22 versus 1.51 × 10−3 mm2/s; P = 0.001) than non-responders and ADC increased in responders (ΔADC, 85.45 versus −8.21 %; P = 0.00005). ΔADC inversely correlated with TRG (r = −0.71, P = 0.000004); no difference in ΔV between responders and non-responders (−50.92 % versus −14.12 %; P = 0.068) and no correlation ΔV-TRG (r = 0.02 P = 0.883) were observed.

Conclusions

The ADC can be used to assess gastro-oesophageal tumour response to neoadjuvant treatment as a reliable expression of tumour regression.

Key Points

DWI is now being used to assess many cancers.

Change in ADC measurements offer new information about oesophageal tumours.

ADC changes are more reliable than dimensional criteria in assessing neoadjuvant treatment.

Such ADC assessment could optimise management of locally advanced gastro-oesophageal cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cunningham D, Allum WH, Stenning SP et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Eng J Med 355:11–20

    Article  CAS  Google Scholar 

  2. Sendler A (2010) Metabolic response evaluation by PET during neoadjuvant treatment for adenocarcinoma of the esophagus and esophagogastric junction. Recent Results Cancer Res 182:167–177

    Article  PubMed  CAS  Google Scholar 

  3. Law S, Fok M, Chow S, Chu KM, Wong J (1997) Preoperative chemotherapy versus surgical therapy alone for squamous cell carcinoma of the esophagus: a prospective randomized trial. J Thorac Cardiovasc Surg 114:210–217

    Article  PubMed  CAS  Google Scholar 

  4. Shimada H, Okazumi S, Koyama M, Japanese MK (2011) Gastric cancer association task force for research promotion: clinical utility of 18F-fluoro-2-deoxyglucose positron emission tomography in gastric and esophageal cancer. Cancer 14:13–21

    Google Scholar 

  5. Westerterp M, Van Westreenen HL, Sloof GW, Plukker JT, Van Lanschot JJ (2006) Role of positron emission tomography in the (re-)staging of oesophageal cancer. Scand J Gastroenterol Suppl 2006:116–122

  6. Brücher BL, Weber W, Bauer M et al (2001) Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 233:300–309

    Article  PubMed  Google Scholar 

  7. Smithers BM, Couper GC, Thomas JM et al (2008) Positron emission tomography and pathological evidence of response to neoadjuvant therapy in adenocarcinoma of the esophagus. Dis Esophagus 21:151–158

    Article  PubMed  CAS  Google Scholar 

  8. Stahl M, Stuschke M, Lehmann N et al (2005) Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol 23:2310–2317

    Article  PubMed  Google Scholar 

  9. Ott K, Fink U, Becker K et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610

    Article  PubMed  CAS  Google Scholar 

  10. Padhani AR (2002) Functional MRI for anticancer therapy assessment. Eur J Cancer 38:2116–2127

    Article  PubMed  CAS  Google Scholar 

  11. Koh DM, Padhani AR (2006) Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br J Radiol 79:633–635

    Article  PubMed  Google Scholar 

  12. Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, Husband JE (2007) Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 188:1001–1008

    Article  PubMed  Google Scholar 

  13. Figueiras RG, Goh V, Padhani AR, Naveira AB, Caamaño AG, Martin CV (2010) The role of functional imaging in colorectal cancer. AJR Am J Roentgenol 195:54–66

    Article  PubMed  Google Scholar 

  14. Harry VN (2010) Novel imaging techniques as response biomarkers in cervical cancer. Gynecol Oncol 116:253–261

    Article  PubMed  CAS  Google Scholar 

  15. Hein PA, Kremser C, Judmaier W et al (2003) Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol 45:214–222

    Article  PubMed  Google Scholar 

  16. Kim SH, Lee JY, Lee JM, Han JK, Choi BI (2011) Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol 21:987–995

    Article  PubMed  Google Scholar 

  17. Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686

    Article  PubMed  CAS  Google Scholar 

  18. Hermann RM, Horstmann O, Haller F et al (2006) Histomorphological tumor regression grading of esophageal carcinoma after neoadjuvant radiochemotherapy: which score to use? Dis Esophagus 19:329–334

    Article  PubMed  CAS  Google Scholar 

  19. Vecchio FM, Valentini V, Minsky BD et al (2005) The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys 62:752–760

    Article  PubMed  Google Scholar 

  20. Siewert JR, Stein HJ (1998) Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg 85:1457–1459

    Article  PubMed  CAS  Google Scholar 

  21. Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250:730–739

    Article  PubMed  Google Scholar 

  22. Lambrecht M, Vandecaveye V, De Keyzer F et al (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer. Int J Radiat Oncol Biol Phys 82:863–870

    Article  PubMed  Google Scholar 

  23. Aoyagi T, Shuto K, Okazumi S, Shimada H, Kazama T, Matsubara H (2011) Apparent diffusion coefficient values measured by diffusion-weighted imaging predict chemoradiotherapeutic effect for advanced esophageal cancer. Dig Surgery 28:252–257

    Article  Google Scholar 

  24. Sun YS, Zhang XP, Tang L, Ji JF, Gu J, Cai Y, Zhang XY (2010) Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 254:170–178

    Article  PubMed  Google Scholar 

  25. Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, Doran S (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360:307–308

    Article  PubMed  Google Scholar 

  26. Cui Y, Zhang XP, Sun YS, Tang L, Shen L (2008) Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 248:894–900

    Article  PubMed  Google Scholar 

  27. Tang L, Zhang XP, Sun YS, Shen L, Li J, Qi LP, Cui Y (2011) Gastrointestinal stromal tumors treated with imatinib mesylate: apparent diffusion coefficient in the evaluation of therapy response in patients. Radiology 258:729–738

    Article  PubMed  Google Scholar 

  28. Park SH, Moon WK, Cho N et al (2010) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257:56–63

    Article  PubMed  Google Scholar 

  29. Dudeck O, Zeile M, Pink D et al (2008) Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging 27:1109–1113

    Article  PubMed  Google Scholar 

  30. Sun YS, Cui Y, Tang L et al (2011) Early evaluation of cancer response by a new functional biomarker: apparent diffusion coefficient. AJR Am J Roentgenol 197:23–29

    Article  Google Scholar 

  31. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  32. Forastiere AA, Ang K, Brizel D et al (2005) National comprehensive cancer network. Head and neck cancers. J Natl Compr Cancer Netw 3:316–391

    Google Scholar 

  33. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  34. Lee KC, Moffat BA, Schott AF et al (2007) Prospective early response imaging biomarker for neoadjuvant breast cancer chemotherapy. Clin Cancer Res 13:443–450

    Article  PubMed  CAS  Google Scholar 

  35. Harry VN, Semple SI, Gilbert FJ, Parkin DE (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111:213–220

    Article  PubMed  Google Scholar 

  36. Lambregts DM, Beets GL, Maas M, Curvo-Semedo L, Kessels AG, Thywissen T, Beets-Tan RG (2012) Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 21:2567–2574

    Article  Google Scholar 

  37. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (eds) (2010) AJCC cancer staging manual, 7th edn. Springer, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco De Cobelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cobelli, F., Giganti, F., Orsenigo, E. et al. Apparent diffusion coefficient modifications in assessing gastro-oesophageal cancer response to neoadjuvant treatment: comparison with tumour regression grade at histology. Eur Radiol 23, 2165–2174 (2013). https://doi.org/10.1007/s00330-013-2807-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2807-0

Keywords

Navigation