Skip to main content
Log in

Measurement of quantifiable parameters by time-density curves in the elastase-induced aneurysm model: first results in the comparison of a flow diverter and a conventional aneurysm stent

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Background

Quantifiable parameters to evaluate the effectiveness of flow diverters (FDs) are desirable. We measured time-density curves (TDCs) and calculated quantifiable parameters in the rabbit elastase-induced aneurysm model after stent (Neuroform [NF]) and FD (Pipeline embolisation device [PED]) treatment.

Methods

Sixteen rabbit elastase-induced aneurysms were treated with FD (n = 9) or NF (n = 5). Angiography was performed before and after treatment and TDCs were created. The time to peak (TTP), the full width at half maximum (FWHM) and the average slope of the curve which represent the inflow (IF) and outflow (OF) were calculated.

Results

Mean values before treatment were TTP = 0.8 s, FWHM = 1.2 s, IF = 153.5 and OF = −54.9. After PED treatment, the TTP of 1.8 s and FWHM of 47.8 s were extended. The IF was 31.2 and the OF was -11.5 and therefore delayed. The values after NF treatment (TTP = 1.1 s, FWHM = 1.8 s, IF = 152.9, OF = −33.2) changed only slightly.

Conclusion

It was feasible to create TDCs in the rabbit aneurysm model. Parameters describing the haemodynamic effect of PED and NF were calculated and were different according to the type of device used. These parameters could possibly serve as predictive markers for aneurysm occlusion.

Key Points

• Detachable coils are now widely used instead of surgery for intracranial aneurysms

• Time-density curves of aneurysms can indicate effectiveness in reducing intra-aneurysmal flow

• Time-density curves can now be measured by a prototype software

• Time-density curves after treatment with a flow diverter or a conventional stent are different

• Parameters of the time-density curves can be calculated and may serve as predictive parameters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CFD:

Computational haemodynamic analysis

DSA:

Digital subtraction angiography

FD:

Flow diverter

Fps:

Frames per second

FWHM:

Full width at half maximum

IF:

Inflow

NF:

Neuroform

OF:

Outflow

PCC:

Parametric colour-coding

PED:

Pipeline embolisation device

TDC:

Time-density curve

TTP:

Time to peak

References

  1. Meyer FB, Morita A, Puumala MR, Nichols DA (1995) Medical and surgical management of intracranial aneurysms. Mayo Clin Proc 70:153–172

    Article  PubMed  CAS  Google Scholar 

  2. Guglielmi G, Viñuela F, Duckwiler G et al (1992) Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. J Neurosurg 77:515–524

    Article  PubMed  CAS  Google Scholar 

  3. Molyneux A, Kerr R, Stratton I et al (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274

    Article  PubMed  Google Scholar 

  4. Geremia G, Haklin M, Brennecke L (1994) Embolization of experimentally created aneurysms with intravascular stent devices. AJNR Am J Neuroradiol 15:1223–1231

    PubMed  CAS  Google Scholar 

  5. Wakhloo AK, Schellhammer F, de Vries J, Haberstroh J, Schumacher M (1994) Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model. AJNR Am J Neuroradiol 15:493–502

    PubMed  CAS  Google Scholar 

  6. Marks MP, Dake MD, Steinberg GK, Norbash AM, Lane B (1994) Stent placement for arterial and venous cerebrovascular disease: preliminary experience. Radiology 191:441–446

    PubMed  CAS  Google Scholar 

  7. Lieber BB, Stancampiano AP, Wakhloo AK (1997) Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann Biomed Eng 25:460–469

    Article  PubMed  CAS  Google Scholar 

  8. Wakhloo AK, Lanzino G, Lieber BB, Hopkins LN (1998) Stents for intracranial aneurysms: the beginning of a new endovascular era? Neurosurgery 43:377–379

    Article  PubMed  CAS  Google Scholar 

  9. Fiorella D, Hsu D, Woo RW, Tarr HH, Nelson PK (2010) Very late thrombosis of a pipeline embolization device construct: case report. Neurosurgery 67:onsE313–onsE314

    Article  PubMed  Google Scholar 

  10. Lubicz B, Collignon L, Raphaeli G et al (2010) Flow-diverter stent for the endovascular treatment of intracranial aneurysms: a prospective study in 29 patients with 34 aneurysms. Stroke 41:2247–2253

    Article  PubMed  Google Scholar 

  11. Kulcsár Z, Houdart E, Bonafé A et al (2011) Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 32:20–25

    Article  PubMed  Google Scholar 

  12. Turowski B, Macht S, Kulcsár Z, Hänggi D, Stummer W (2011) Early fatal haemorrhage after endovascular cerebral aneurysm treatment with a flow diverter (SILK-stent): do we need to rethink our concepts? Neuroradiology 53:37–41

    Article  PubMed  Google Scholar 

  13. O’kelly CJ, Krings T, Fiorella D, Marotta TR (2010) A novel grading scale for the angiographic assessment of intracranial aneurysms treated using flow diverting stents. Interv Neuroradiol 16:133–137

    PubMed  Google Scholar 

  14. Kamran M, Yarnold J, Grunwald IQ, Byrne JV (2011) Assessment of angiographic outcomes after flow diversion treatment of intracranial aneurysms: a new grading schema. Neuroradiology 53:501–508

    Article  PubMed  Google Scholar 

  15. Sadasivan C, Lieber BB, Gounis MJ, Lopes DK, Hopkins LN (2002) Angiographic quantification of contrast medium washout from cerebral aneurysms after stent placement. AJNR Am J Neuroradiol 23:1214–1221

    PubMed  Google Scholar 

  16. Sadasivan C, Cesar L, Seong J, Wakhloo AK, Lieber BB (2009) Treatment of rabbit elastase-induced aneurysm models by flow diverters: development of quantifiable indexes of device performance using digital subtraction angiography. IEEE Trans Med Imaging 28:1117–1125

    Article  PubMed  Google Scholar 

  17. Ahmed AS, Deuerling-Zheng Y, Strother CM et al (2009) Impact of intra-arterial injection parameters on arterial, capillary, and venous time-concentration curves in a canine model. AJNR Am J Neuroradiol 30:1337–1341

    Article  PubMed  CAS  Google Scholar 

  18. Strother CM, Bender F, Deuerling-Zheng Y et al (2010) Parametric color coding of digital subtraction angiography. AJNR Am J Neuroradiol 31:919–924

    Article  PubMed  CAS  Google Scholar 

  19. Cloft HJ, Altes TA, Marx WF et al (1999) Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology 213:223–228

    PubMed  CAS  Google Scholar 

  20. Kallmes DF, Helm GA, Hudson SB et al (1999) Histologic evaluation of platinum coil embolization in an aneurysm model in rabbits. Radiology 213:217–222

    PubMed  CAS  Google Scholar 

  21. Roth C, Struffert T, Grunwald IQ et al (2008) Long-term results with Matrix coils vs GDC: an angiographic and histopathological comparison. Neuroradiology 50:693–699

    Article  PubMed  CAS  Google Scholar 

  22. Struffert T, Roth C, Romeike B et al (2008) Onyx in an experimental aneurysm model: histological and angiographic results. J Neurosurg 109:77–82

    Article  PubMed  Google Scholar 

  23. Grunwald IQ, Romeike BF, Roth C et al (2005) Anticoagulation regimes and their influence on the occlusion rate of aneurysms: an experimental study in rabbits. Neurosurgery 57:1048–1055

    Article  PubMed  Google Scholar 

  24. Zeng Z, Kallmes DF, Durka MJ et al (2011) Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms? AJNR Am J Neuroradiol 32:595–601

    Article  PubMed  CAS  Google Scholar 

  25. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ (2007) A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 38:2346–2352

    Article  PubMed  Google Scholar 

  26. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ (2009) A second-generation, endoluminal, flow-disrupting device for treatment of saccular aneurysms. AJNR Am J Neuroradiol 30:1153–1158

    Article  PubMed  CAS  Google Scholar 

  27. Ding Y, Dai D, Kadirvel R, Lewis DA, Kallmes DF (2010) Five-year follow-up in elastase-induced aneurysms in rabbits. AJNR Am J Neuroradiol 31:1236–1239

    Article  PubMed  CAS  Google Scholar 

  28. Grunwald IQ, Romeike B, Eymann R, Roth C, Struffert T, Reith W (2006) An experimental aneurysm model: a training model for neurointerventionalists. Interv Neuroradiol 12:17–24

    PubMed  CAS  Google Scholar 

  29. Bouzeghrane F, Naggara O, Kallmes DF, Berenstein A, Raymond J (2010) International consortium of neuroendovascular centres. In vivo experimental intracranial aneurysm models: a systematic review. AJNR Am J Neuroradiol 31:418–23

    Article  PubMed  CAS  Google Scholar 

  30. Dohatcu A, Ionita CN, Paciorek A, Bednarek DR, Hoffmann KR, Rudin S (2008) Endovascular image-guided treatment of in-vivo model aneurysms with asymmetric vascular stents (AVS): evaluation with time-density curve angiographic analysis and histology. Proc Soc Photo Opt Instrum Eng 6916:6916OP

    PubMed  Google Scholar 

  31. Cantón G, Levy DI, Lasheras JC, Nelson PK (2005) Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms. J Neurosurg 103:891–902

    Article  PubMed  Google Scholar 

  32. Cebral JR, Mut F, Raschi M et al (2011) Aneurysm rupture following treatment with flow-diverting stents: computational haemodynamics analysis of treatment. AJNR Am J Neuroradiol 32:27–33

    Article  PubMed  CAS  Google Scholar 

  33. Fiorella D, Albuquerque FC, Deshmukh VR et al (2006) Endovascular reconstruction with the Neuroform stent as monotherapy for the treatment of uncoilable intradural pseudoaneurysms. Neurosurgery 59:291–300

    Article  PubMed  Google Scholar 

  34. Ediriwickrema A, Williamson T, Hebert R, Matouk C, Johnson MH, Bulsara KR (2012) Intracranial stenting as monotherapy in subarachnoid hemorrhage and sickle cell disease. J Neurointerv Surg. doi:10.1136/neurintsurg-2011-010224

  35. Krings T, Hans FJ, Möller-Hartmann W et al (2005) Treatment of experimentally induced aneurysms with stents. Neurosurgery 56:1347–1359

    Article  PubMed  Google Scholar 

  36. Wang ZJ, Hoffmann KR, Wang Z, Rudin S, Guterman LR, Meng H (2005) Contrast settling in cerebral aneurysm angiography. Phys Med Biol 50:3171–3181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Struffert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struffert, T., Ott, S., Kowarschik, M. et al. Measurement of quantifiable parameters by time-density curves in the elastase-induced aneurysm model: first results in the comparison of a flow diverter and a conventional aneurysm stent. Eur Radiol 23, 521–527 (2013). https://doi.org/10.1007/s00330-012-2611-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2611-2

Keywords

Navigation