Skip to main content

Advertisement

Log in

The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55)

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Tumour xenografts of well-discernible sizes can be examined well by molecular ultrasound. Here, we investigated whether very early breast carcinomas express sufficient levels of VEGFR2 for reliable molecular ultrasound imaging with targeted microbubbles.

Methods

MCF-7 breast cancer xenografts were orthotopically implanted in nude mice (n = 26). Tumours measuring from 4 mm3 (2 mm diameter) up to 65 mm3 (5 mm diameter) were examined with automated 3D molecular ultrasound using clinically translatable VEGFR2-targeted microbubbles (BR55). Additionally, the relative tumour blood volume was assessed with non-targeted microbubbles (BR38). In vivo ultrasound data were validated by quantitative immunohistochemistry.

Results

Very small lesions 2 mm in diameter showed the highest binding of VEGFR2-specific microbubbles. In larger tumours significantly less BR55 accumulated (p = 0.023). Nonetheless, binding of VEGFR2-targeted microbubbles was still high enough for imaging. The relative blood volume was comparable at all tumour sizes. Both findings were confirmed by immunohistochemistry. Additionally, a significantly enhanced number of large and mature vessels were detected with increasing tumour size (p < 0.01), explaining the decrease in VEGFR2 expression during tumour growth.

Conclusions

3D molecular ultrasound using BR55 is very well suited to depicting the angiogenic activity in very small breast lesions, suggesting its potential for detecting and characterising these lesions.

Key Points

Xenografts implanted into nude mice offer new insights into breast cancer.

Small MCF-7 breast xenografts (2 mm) exhibit greater VEGFR2 expression than larger tumours.

3D molecular ultrasound with BR55 microbubbles accurately depicts the high angiogenic activity.

Detecting and characterising small cancers with molecular ultrasound may become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palmowski M, Morgenstern B, Hauff P et al (2008) Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol 43:162–169

    Article  PubMed  CAS  Google Scholar 

  2. Palmowski M, Huppert J, Ladewig G et al (2008) Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7:101–109

    Article  PubMed  CAS  Google Scholar 

  3. Lee DJ, Lyshchik A, Huamani J et al (2008) Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 27:855–866

    PubMed  Google Scholar 

  4. Willmann JK, Cheng Z, Davis C et al (2008) Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 249:212–219

    Article  PubMed  Google Scholar 

  5. Ellegala DB, Leong-Poi H, Carpenter JE et al (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108:336–341

    Article  PubMed  Google Scholar 

  6. Leong-Poi H, Christiansen J, Klibanov AL et al (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107:455–460

    Article  PubMed  CAS  Google Scholar 

  7. Anderson CR, Rychak JJ, Backer M et al (2010) scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 45:579–585

    Article  PubMed  CAS  Google Scholar 

  8. Pillai R, Marinelli ER, Fan H et al (2010) A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis. Bioconjug Chem 21:556–562

    Google Scholar 

  9. Streeter JE, Gessner R, Miles I et al (2010) Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies. Mol Imaging 9:87–95

    PubMed  Google Scholar 

  10. Anderson CR, Hu X, Zhang H et al (2011) Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 46:215–224

    Article  PubMed  Google Scholar 

  11. Bzyl J, Lederle W, Rix A et al (2011) Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur Radiol 21:1988–1995

    Article  PubMed  Google Scholar 

  12. Pochon S, Tardy I, Bussat P et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45:89–95

    Article  PubMed  CAS  Google Scholar 

  13. Tardy I, Pochon S, Theraulaz M et al (2010) Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 45:573–578

    Article  PubMed  CAS  Google Scholar 

  14. Pysz MA, Foygel K, Rosenberg J et al (2010) Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256:519–527

    Article  PubMed  Google Scholar 

  15. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  16. Thompson A, Brennan K, Cox A et al (2008) Evaluation of the current knowledge limitations in breast cancer research: a gap analysis. Breast Cancer Res 10:R26

    Article  PubMed  Google Scholar 

  17. Bombardieri E, Gianni L (2004) The choice of the correct imaging modality in breast cancer management. Eur J Nucl Med Mol Imaging 31(Suppl 1):S179–S186

    Article  PubMed  Google Scholar 

  18. Deshpande N, Ren Y, Foygel K et al (2011) Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 258:804–811

    Article  PubMed  Google Scholar 

  19. Wenkel E, Heckmann M, Heinrich M et al (2008) Automated breast ultrasound: lesion detection and BI-RADS classification—a pilot study. Rofo 180:804–808

    Article  PubMed  CAS  Google Scholar 

  20. Kelly KM, Dean J, Comulada WS et al (2010) Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 20:734–742

    Article  PubMed  Google Scholar 

  21. Reinhardt M, Hauff P, Briel A et al (2005) Sensitive particle acoustic quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations. Invest Radiol 40:2–7

    PubMed  CAS  Google Scholar 

  22. Schneider M, Anantharam B, Arditi M et al (2011) BR38, a new ultrasound blood pool agent. Invest Radiol 46:486–494

    Article  PubMed  CAS  Google Scholar 

  23. Palmowski M, Peschke P, Huppert J et al (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11:856–863

    PubMed  CAS  Google Scholar 

  24. Palmowski M, Lederle W, Gaetjens J et al (2010) Comparison of conventional time-intensity curves vs. maximum intensity over time for post-processing of dynamic contrast-enhanced ultrasound. Eur J Radiol 75:e149–e153

    Article  PubMed  Google Scholar 

  25. Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  26. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  27. Vajkoczy P, Farhadi M, Gaumann A et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785

    PubMed  CAS  Google Scholar 

  28. Kuhl C, Weigel S, Schrading S et al (2010) Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 28:1450–1457

    Article  PubMed  Google Scholar 

  29. Liberman L, Mason G, Morris EA et al (2006) Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size. AJR Am J Roentgenol 186:426–430

    Article  PubMed  Google Scholar 

  30. Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378

    Article  PubMed  Google Scholar 

  31. Smith NR, Baker D, James NH et al (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561

    Article  PubMed  CAS  Google Scholar 

  32. Jacobs TW, Schnitt SJ, Tan X et al (2002) Radial scars of the breast and breast carcinomas have similar alterations in expression of factors involved in vascular stroma formation. Hum Pathol 33:29–38

    Article  PubMed  Google Scholar 

  33. Hille H, Vetter M, Hackeloer BJ (2007) The suitability of high-resolution ultrasound for the detection of DCIS. Ultraschall Med 28:307–312

    Article  PubMed  CAS  Google Scholar 

  34. Schoonjans JM, Brem RF (2000) Sonographic appearance of ductal carcinoma in situ diagnosed with ultrasonographically guided large core needle biopsy: correlation with mammographic and pathologic findings. J Ultrasound Med 19:449–457

    PubMed  CAS  Google Scholar 

  35. Moon WK, Myung JS, Lee YJ et al (2002) US of ductal carcinoma in situ. Radiographics 22:269–280

    PubMed  Google Scholar 

  36. Guidi AJ, Fischer L, Harris JR et al (1994) Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 86:614–619

    Article  PubMed  CAS  Google Scholar 

  37. Guidi AJ, Schnitt SJ, Fischer L et al (1997) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 80:1945–1953

    Article  PubMed  CAS  Google Scholar 

  38. Viacava P, Naccarato AG, Bocci G et al (2004) Angiogenesis and VEGF expression in pre-invasive lesions of the human breast. J Pathol 204:140–146

    Article  PubMed  CAS  Google Scholar 

  39. Raica M, Cimpean AM, Ribatti D (2009) Angiogenesis in pre-malignant conditions. Eur J Cancer 45:1924–1934

    Article  PubMed  CAS  Google Scholar 

  40. Lederle W, Stark HJ, Skobe M et al (2006) Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells. Am J Pathol 169:1767–1783

    Article  PubMed  CAS  Google Scholar 

  41. Lederle W, Linde N, Heusel J et al (2010) Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am J Pathol 176:981–994

    Article  PubMed  CAS  Google Scholar 

  42. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Kiessling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bzyl, J., Palmowski, M., Rix, A. et al. The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 23, 468–475 (2013). https://doi.org/10.1007/s00330-012-2594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2594-z

Keywords

Navigation