Skip to main content
Log in

Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Characterisation and quantification of emphysema are necessary for planning of local treatment and monitoring. Sensitive, easy to measure, and stable parameters have to be established and their relation to the well-known pulmonary function testing (PFT) has to be investigated. A retrospective analysis of 221 nonenhanced thin-section MDCT with a corresponding PFT was carried out, with a subgroup analysis in 102 COPD stage III+IV, 44 COPD stage 0, and 33 investigations into interstitial lung disease (ILD). The in-house YACTA software was used for automatic quantification of lung and emphysema volume [l], emphysema index, mean lung density (MLD [HU]) and 15th percentile [HU]. CT-derived lung volume is significantly smaller in ILD (3.8) and larger in COPD (7.2) than in controls (5.9, p < 0.0001). Emphysema volume and index are significantly higher in COPD than in controls (3.2 vs. 0.5, p < 0.0001, 45% vs. 8%, p < 0.0001). MLD and 15th percentile are significantly smaller in COPD (−877/−985, p < 0.0001) and significantly higher in ILD (−777, p < 0.0006/−914, p < 0.0001) than in controls (−829/−935). A relevant amount of COPD patients apparently do not suffer from emphysema, while controls who do not fulfil PFT criteria for COPD also demonstrate CT features of emphysema. Automatic quantification of thin-section CT delivers convincing parameters and ranges that are able to differentiate among emphysema, control and ILD. An emphysema index of lower 20%, MLD higher than −850, and 15th percentile lower than −950 might be regarded as normal (thin-section, nonenhanced, B40, YACTA). These ranges might be helpful in the judgement of individual measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

6MWT:

six-minute-walk test

COPD:

chronic obstructive pulmonary disease

EI:

emphysema index

EV:

emphysema volume

FEV1 :

forced expiratory volume in 1 s

FVC:

forced vital capacity

ILD:

interstitial lung disease

ITGV:

intrathoracic gas volume

LV:

lung volume

MLD:

mean lung density

NSIP:

nonspecific interstitial pneumonia

PFT:

pulmonary function test

RV:

residual volume

TLC:

total lung capacity

UIP:

usual interstitial pneumonia

References

  1. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive lung disease. Am J Respir Crit Care Med 52:S77–S83

    Google Scholar 

  2. Stolk J, Putter H, Bakker EM et al (2007) Progression parameters for emphysema: a clinical investigation. Respir Med 101:1924–1930

    Article  PubMed  Google Scholar 

  3. Kemerink GJ, Kruize HH, Lamers RJ et al (1997) CT lung densitometry: dependence of CT number histograms on sample volume and consequences for scan protocol comparability. J Comput Assist Tomogr 21:948–954

    Article  PubMed  CAS  Google Scholar 

  4. Bankier AA, Madani A, Gevenois PA (2002) CT quantification of pulmonary emphysema: assessment of lung structure and function. Crit Rev Comput Tomogr 43:399–417

    Article  PubMed  Google Scholar 

  5. Coxson HO, Rogers RM, Whittall KP et al (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159:851–856

    PubMed  CAS  Google Scholar 

  6. Gierada DS, Yusen RD, Pilgram TK et al (2001) Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery. Radiology 220:448–454

    PubMed  CAS  Google Scholar 

  7. Stolk J, Dirksen A, van der Lugt AA et al (2001) Repeatability of lung density measurements with low-dose computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Invest Radiol 36:648–651

    Article  PubMed  CAS  Google Scholar 

  8. Stolk J, Ng WH, Bakker ME et al (2003) Correlation between annual change in health status and computer tomography derived lung density in subjects with alpha1-antitrypsin deficiency. Thorax 58:1027–1030

    Article  PubMed  CAS  Google Scholar 

  9. Bakker ME, Stolk J, Putter H et al (2005) Variability in densitometric assessment of pulmonary emphysema with computed tomography. Invest Radiol 40:777–783

    Article  PubMed  Google Scholar 

  10. Madani A, De Maertelaer V, Zanen J (2007) Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification—comparison with macroscopic and microscopic morphometry. Radiology 243:250–257

    Article  PubMed  Google Scholar 

  11. Bergin C, Müller NL, Nichols DM et al (1986) The diagnosis of emphysema: a computed tomographic-pathologic correlation. Am Rev Respir Dis 133:541–546

    PubMed  CAS  Google Scholar 

  12. Müller NL, Staples CA, Miller RR et al (1988) “Density mask”: an objective method to quantitate emphysema using computed tomography. Chest 94:782–787

    Article  PubMed  Google Scholar 

  13. Gevenois PA, de Maertelaer V, De Vuyst P et al (1995) Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 152:653–657

    PubMed  CAS  Google Scholar 

  14. Gevenois PA, De Vuyst P, de Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192

    PubMed  CAS  Google Scholar 

  15. Gevenois PA, De Vuyst P, Sy P et al (1996) Pulmonary emphysema: quantitative CT during expiration. Radiology 199:825–829

    PubMed  CAS  Google Scholar 

  16. Kinsella M, Müller NL, Abboud RT et al (1990) Quantitation of emphysema by computed tomography using a “density mask” program and correlation with pulmonary function tests. Chest 97:315–321

    Article  PubMed  CAS  Google Scholar 

  17. Nishimura K, Murata K, Yamagishi M et al (1998) Comparison of different computed tomography scanning methods for quantifying emphysema. J Thorac Imaging 13:193–198

    Article  PubMed  CAS  Google Scholar 

  18. Nakano Y, Sakai H, Muro S et al (1999) Comparison of low attenuation areas on CT between inner and outer segments of the lung in COPD patients: incidence and contribution to lung function. Thorax 54:384–389

    PubMed  CAS  Google Scholar 

  19. Nakano Y, Muro S, Sakai H et al (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    PubMed  CAS  Google Scholar 

  20. Mishima M, Itoh H, Sakai H et al (1999) Optimized scanning conditions of HRCT in the follow-up of pulmonary emphysema. J Comput Assist Tomogr 23:380–384

    Article  PubMed  CAS  Google Scholar 

  21. Heussel CP, Achenbach A, Buschsieweke C et al (2006) Quantification of pulmonary emphysema in multislice-CT using different software tools. Fortschr Röntgenstr 178:987–998

    Article  CAS  Google Scholar 

  22. Newell JD, Hogg JC, Snider GL (2004) Report of a workshop: quantitative computed tomography scanning in longitudinal studies of emphysema. Eur Respir J 23:769–775

    Article  PubMed  Google Scholar 

  23. Miller MR, Hankinson J, Brusasco V et al (2005) ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  Google Scholar 

  24. Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522

    Article  PubMed  CAS  Google Scholar 

  25. American Association for Respiratory Care (AARC) (2001) Clinical practice guideline: body plethysmography: 2001 revision & update. Respir Care 46:506–513

  26. American Thoracic Society (1994) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136

    Google Scholar 

  27. Quanjer PhH, Tammeling GJ, Cotes JE et al (1993) Lung volumes and ventilatory flows. Report working Party “Standardization of Lung Function Tests” European Community of Steal and Coal and European Respiratory Society. Eur Respir J 6 Suppl 16:5–40

    CAS  Google Scholar 

  28. Ley-Zaporozhan J, Ley S, Weinheimer O et al (2008) Quantitative analysis of emphysema in 3D using MDCT: influence of different reconstruction algorithms. Eur J Radiol 65:228–234

    Article  PubMed  Google Scholar 

  29. Achenbach T, Buschsieweke C, Gerhards A et al (2005) Does HRCT-emphysema index represent the entire lung? Fortschr Röntgenstr 177:655–659

    Article  CAS  Google Scholar 

  30. Zaporozhan J, Ley S, Eberhardt R, Weinheimer O et al (2005) Paired inspiratory/expiratory volumetric thin-slice CT scan for emphysema analysis: comparison of different quantitative evaluations and pulmonary function test. Chest 128:3212–3220

    Article  PubMed  Google Scholar 

  31. Orlandi I, Moroni C, Camiciottoli G et al (2004) Spirometric-gated computed tomography quantitative evaluation of lung emphysema in chronic obstructive pulmonary disease: a comparison of 3 techniques. J Comput Assist Tomogr 28:437–442

    Article  PubMed  Google Scholar 

  32. Akira M, Toyokawa K, Inoue Y et al (2009) Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment. AJR Am J Roentgenol 192:267–272

    Article  PubMed  Google Scholar 

  33. Lee YK, Oh YM, Lee JH et al (2008) KOLD Study Group. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165

    Article  PubMed  Google Scholar 

  34. Fujimoto K, Kitaguchi Y, Kubo K et al (2006) Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography. Respirology 11:731–740

    Article  PubMed  Google Scholar 

  35. Hersh CP, Jacobson FL, Gill R et al (2007) Computed tomography phenotypes in severe, early-onset chronic obstructive pulmonary disease. COPD 4:331–337

    Article  PubMed  Google Scholar 

  36. Gelb AF, Hogg JC, Muller NL et al (1996) Contribution of emphysema and small airways in COPD. Chest 109:353–359

    Article  PubMed  CAS  Google Scholar 

  37. Zaporozhan J, Ley S, Weinheimer O et al (2006) Multi-detector CT of the chest: influence of dose onto quantitative evaluation of severe emphysema: a simulation study. J Comput Assist Tomogr 30:460–468

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Heussel.

Additional information

This manuscript includes major parts of the doctoral thesis of Romy Hantusch and Simon Hartlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heussel, C.P., Herth, F.J.F., Kappes, J. et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol 19, 2391–2402 (2009). https://doi.org/10.1007/s00330-009-1437-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1437-z

Keywords

Navigation