Skip to main content
Log in

Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Dual-energy CT can be applied for bone elimination in cerebral CT angiography (CTA). The aim of this study was to compare the results of dual-energy direct bone removal CTA (DE-BR-CTA) with those of digital subtraction angiography (DSA). Twelve patients with intracranial aneurysms and/or ICA stenosis underwent a dual-source CT in dual-energy mode. Post-processing software selectively removed bone structures using the two energy data sets. Three-dimensional images with and without bone removal were reviewed and compared to DSA. Dual-energy bone removal was successful in all patients. For 10 patients, bone removal was good and CTA maximum-intensity projection (MIP) images could be used for vessel evaluation. For two patients, bone removal was moderate with some bone remnants, but this did not inhibit the three-dimensional visualization. Three aneurysms adjacent to the skull base were only partially visible in conventional CTA but were fully visible in DE-BR-CTA. In five patients with ICA stenosis, DE-BR-CTA revealed the stenotic lesions on the MIP images. The correlation between DSA and DE-BR-CTA was good (R 2=0.822), but DE-BR-CTA led to an overestimation of stenosis. DE-BR-CTA was able to eliminate bone structure using only a single CT data acquisition and is useful to evaluate intracranial aneurysms and stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agid R, Lee SK, Willinsky RA et al (2006) Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to “triage” patients’ treatment. Neuroradiology 48(11):787–794

    Article  PubMed  CAS  Google Scholar 

  2. Hashimoto H, Iida J, Hironaka Y et al (2000) Use of spiral computerized tomography angiography in patients with subarachnoid hemorrhage in whom subtraction angiography did not reveal cerebral aneurysms. J Neurosurg 92(2):278–283

    PubMed  CAS  Google Scholar 

  3. Hirai T, Korogi Y, Ono K et al (2001) Preoperative evaluation of intracranial aneurysms: usefulness of intraarterial 3D CT angiography and conventional angiography with a combined unit-initial experience. Radiology 220(2):499–505

    PubMed  CAS  Google Scholar 

  4. Jayakrishnan VK, White PM, Aitken D et al (2003) Subtraction helical CT angiography of intra- and extracranial vessels: technical considerations and preliminary experience. AJNR Am J Neuroradiol 24(3):451–455

    PubMed  Google Scholar 

  5. Lell M, Anders K, Klotz E et al (2006) Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol 16(4):889–897

    Article  PubMed  CAS  Google Scholar 

  6. Sakamoto S, Kiura Y, Shibukawa M et al (2006) Subtracted 3D CT angiography for evaluation of internal carotid artery aneurysms: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 27(6):1332–1337

    PubMed  CAS  Google Scholar 

  7. Tomandl BF, Hammen T, Klotz E et al (2006) Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol 27(1):55–59

    PubMed  CAS  Google Scholar 

  8. Venema HW, Hulsmans FJ, den Heeten GJ (2001) CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination-feasibility study. Radiology 218(3):893–898

    PubMed  CAS  Google Scholar 

  9. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  10. Samuels OB, Joseph GJ, Lynn MJ et al (2000) A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 21(4):643–646

    PubMed  CAS  Google Scholar 

  11. Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131(2):521–523

    PubMed  CAS  Google Scholar 

  12. Millner MR, McDavid WD, Waggener RG et al (1979) Extraction of information from CT scans at different energies. Med Phys 6(1):70–71

    Article  PubMed  CAS  Google Scholar 

  13. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12(6):545–551

    Article  PubMed  CAS  Google Scholar 

  14. Laval-Jeantet AM, Cann CE, Roger B et al (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8(6):1164–1167

    Article  PubMed  CAS  Google Scholar 

  15. Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6(5):418–425

    Article  PubMed  CAS  Google Scholar 

  16. Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

    Article  PubMed  Google Scholar 

  17. Scheffel H, Stolzmann P, Frauenfelder T et al (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42(12):823–829

    Article  PubMed  Google Scholar 

  18. Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43(2):112–119

    Article  PubMed  Google Scholar 

  19. Sun C, Miao F, Wang XM et al (2008) An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat 30(5):443–447

    Article  PubMed  Google Scholar 

  20. Pozzi-Mucelli F, Bruni S, Doddi M et al (2007) Detection of intracranial aneurysms with 64 channel multidetector row computed tomography: comparison with digital subtraction angiography. Eur J Radiol 64(1):15–26

    Article  PubMed  Google Scholar 

  21. Gorzer H, Heimberger K, Schindler E (1994) Spiral CT angiography with digital subtraction of extra- and intracranial vessels. J Comput Assist Tomogr 18(5):839–841

    Article  PubMed  CAS  Google Scholar 

  22. Hoit DA, Malek AM (2006) Fusion of three-dimensional calcium rendering with rotational angiography to guide the treatment of a giant intracranial aneurysm: technical case report. Neurosurgery 58(1 Suppl):173–174

    Article  Google Scholar 

  23. Nguyen-Huynh MN, Wintermark M, English J et al (2008) How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 39(4):1184–1188

    Article  PubMed  Google Scholar 

  24. Bash S, Villablanca JP, Jahan R et al (2005) Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 26(5):1012–1021

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Uotani, K., Nakazawa, T. et al. Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol 19, 1019–1024 (2009). https://doi.org/10.1007/s00330-008-1213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1213-5

Keyword

Navigation