Skip to main content
Log in

Quantification of left ventricular function and mass in cardiac Dual-Source CT (DSCT) exams: comparison of manual and semiautomatic segmentation algorithms

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of our study was to evaluate reliability of left ventricular (LV) function and mass quantification in cardiac DSCT exams comparing manual contour tracing and a region-growing-based semiautomatic segmentation analysis software. Thirty-three consecutive patients who underwent cardiac DSCT exams were included. Axial 1-mm slices were used for the semiautomated technique, and short-axis 8-mm slice thickness multiphase image reconstructions were the basis for manual contour tracing. Left ventricular volumes, ejection fraction and myocardial mass were assessed by both segmentation methods. Length of time needed for both techniques was also recorded. Left ventricular functional parameters derived from semiautomatic contour detection algorithm were not statistically different from manual tracing and showed an excellent correlation (p<0.001). The semiautomatic contour detection algorithm overestimated LV mass (180.30±44.74 g) compared with manual contour tracing (156.07±46.29 g) (p<0.001). This software allowed a significant reduction of the time needed for global LV assessment (mean 174.16±71.53 s, p<0.001). Objective quantification of LV function using the evaluated region-growing-based semiautomatic segmentation analysis software is feasible, accurate, reliable and time-effective. However, further improvements are needed to equal results achieved by manual contour tracing, especially with regard to LV mass quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1):44–51

    PubMed  CAS  Google Scholar 

  2. Hammermeister KE, DeRouen TA, Dodge HT (1979) Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation 59(3):421–430

    PubMed  CAS  Google Scholar 

  3. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 96(12):4286–4297

    PubMed  CAS  Google Scholar 

  4. Bavelaar-Croon CD, Kayser HW, van der Wall EE, de Roos A, Dibbets-Schneider P, Pauwels EK et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217(2):572–575

    PubMed  CAS  Google Scholar 

  5. Lipton MJ, Farmer DW, Killebrew EJ, Bouchard A, Dean PB, Ringertz HG et al (1985) Regional myocardial dysfunction: evaluation of patients with prior myocardial infarction with fast CT. Radiology 157(3):735–740

    PubMed  CAS  Google Scholar 

  6. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21(16):1387–1396

    Article  PubMed  CAS  Google Scholar 

  7. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25(21):1940–1965

    Article  PubMed  Google Scholar 

  8. Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W et al (2000) Age-and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10(3):438–442

    Article  PubMed  CAS  Google Scholar 

  9. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M et al (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol 186(6 Suppl 2):S357–S365

    Article  PubMed  Google Scholar 

  10. Myerson SG, Bellenger NG, Pennell DJ (2002) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39(3):750–755

    Article  PubMed  CAS  Google Scholar 

  11. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296(4):403–411

    Article  PubMed  CAS  Google Scholar 

  12. Mahnken AH, Koos R, Katoh M, Spuentrup E, Busch P, Wildberger JE et al (2005) Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 15(4):714–720

    Article  PubMed  Google Scholar 

  13. Cury RC, Nieman K, Shapiro MD, Nasir K, Cury RC, Brady TJ (2007) Comprehensive cardiac CT study: evaluation of coronary arteries, left ventricular function, and myocardial perfusion-is it possible? J Nucl Cardiol 14(2):229–243

    Article  PubMed  Google Scholar 

  14. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J (2007) Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 48(1):30–35

    Article  PubMed  CAS  Google Scholar 

  15. Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG et al (2003) Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 38(10):653–661

    Article  PubMed  Google Scholar 

  16. Juergens KU, Grude M, Maintz D, Fallenberg EM, Wichter T, Heindel W et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230(2):403–410

    Article  PubMed  Google Scholar 

  17. Schlosser T, Pagonidis K, Herborn CU, Hunold P, Waltering KU, Lauenstein TC et al (2005) Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. AJR Am J Roentgenol 184(3):765–773

    PubMed  Google Scholar 

  18. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  PubMed  Google Scholar 

  19. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    Article  PubMed  Google Scholar 

  20. Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747

    Article  PubMed  Google Scholar 

  21. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57(3):331–335

    Article  PubMed  Google Scholar 

  22. Manzke R, Koken P, Hawkes D, Grass M (2005) Helical cardiac cone beam CT reconstruction with large area detectors: a simulation study. Phys Med Biol 50(7):1547–1568

    Article  PubMed  CAS  Google Scholar 

  23. Blobel J, Baartman H, Rogalla P, Mews J, Lembcke A (2003) Spatial and temporal resolution with 16-slice computed tomography for cardiac imaging. Fortschr Röntgenstr 175(9):1264–1271

    Article  CAS  Google Scholar 

  24. Mahnken AH, Muhlenbruch G, Koos R, Stanzel S, Busch PS, Niethammer M et al (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16(7):1416–1423

    Article  PubMed  Google Scholar 

  25. Mühlenbruch G, Das M, Hohl C, Wildberger JE, Rinck D, Flohr TG et al (2006) Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm. Eur Radiol 16(5):1117–1123

    Article  PubMed  Google Scholar 

  26. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32(8):2536–2547

    Article  PubMed  CAS  Google Scholar 

  27. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    PubMed  CAS  Google Scholar 

  28. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268

    Article  PubMed  CAS  Google Scholar 

  29. van der Vleuten PA, Willems TP, Gotte MJ, Tio RA, Greuter MJ, Zijlstra F et al (2006) Quantification of global left ventricular function: comparison of multidetector computed tomography and magnetic resonance imaging. a meta-analysis and review of the current literature. Acta Radiol 47(10):1049–1057

    Article  PubMed  Google Scholar 

  30. Belge B, Coche E, Pasquet A, Vanoverschelde JL, Gerber BL (2006) Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: comparison with cine magnetic resonance imaging. Eur Radiol 16(7):1424–1433

    Article  PubMed  Google Scholar 

  31. Salm LP, Schuijf JD, de Roos A, Lamb HJ, Vliegen HW, Jukema JW et al (2006) Global and regional left ventricular function assessment with 16-detector row CT: comparison with echocardiography and cardiovascular magnetic resonance. Eur J Echocardiogr 7(4):308–314

    Article  PubMed  Google Scholar 

  32. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R et al (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114(7):654–661

    Article  PubMed  Google Scholar 

  33. Leschka S, Wildermuth S, Boehm T, Desbiolles L, Husmann L, Plass A et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385

    Article  PubMed  Google Scholar 

  34. Wintersperger BJ, Nikolaou K, von Ziegler F, Johnson T, Rist C, Leber A et al (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41(5):436–442

    Article  PubMed  Google Scholar 

  35. Schroeder S, Kopp AF, Kuettner A, Burgstahler C, Herdeg C, Heuschmid M et al (2002) Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging 26(2):106–111

    Article  PubMed  Google Scholar 

  36. Gleichmann U, Fassbender D, Trieb G, Mannebach H, Ohlmeier H (1982) The influence of beta-adrenoceptor antagonists with and without intrinsic sympathomimetic activity on local wall motion abnormalities in patients with coronary heart disease. Br J Clin Pharmacol 13(Suppl 2):301S–304S

    PubMed  CAS  Google Scholar 

  37. Silke B, Verma SP, Frais MA, Reynolds G, Taylor SH (1986) Comparative effects of metoprolol and celiprolol on cardiac hemodynamics and left ventricular volume at rest and during exercise-induced angina. Clin Pharmacol Ther 39(1):5–14

    Article  PubMed  CAS  Google Scholar 

  38. Mahnken AH, Hohl C, Suess C, Bruder H, Muhlenbruch G, Das M et al (2006) Influence of heart rate and temporal resolution on left-ventricular volumes in cardiac multislice spiral computed tomography: a phantom study. Invest Radiol 41(5):429–435

    Article  PubMed  Google Scholar 

  39. Mahnken AH, Spuentrup E, Niethammer M, Buecker A, Boese J, Wildberger JE et al (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 44(6):604–611

    Article  PubMed  CAS  Google Scholar 

  40. Boese JM, Bahner ML, Albers J, van Kaick G (2000) Optimizing temporal resolution in CT with retrospective ECG gating. Radiologe 40(2):123–129

    Article  PubMed  CAS  Google Scholar 

  41. Mahnken AH, Bruder H, Suess C, Muhlenbruch G, Bruners P, Hohl C et al (2007) Dual-source computed tomography for assessing cardiac function: A phantom study. Invest Radiol 42(7):491–498

    Article  PubMed  Google Scholar 

  42. Boehm T, Alkadhi H, Roffi M, Willmann JK, Desbiolles LM, Marincek B et al (2004) Time-effectiveness, observer-dependence, and accuracy of measurements of left ventricular ejection fraction using 4-channel MDCT. Fortschr Röntgenstr 176(4):529–537

    Article  CAS  Google Scholar 

  43. McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243(3):775–784

    Article  PubMed  Google Scholar 

  44. Becker C, Schatzl M, Feist H, Bauml A, Schopf UJ, Michalski G et al (1999) [Assessment of the effective dose for routine protocols in conventional CT, electron beam CT and coronary angiography]. Fortschr Röntgenstr 170(1):99–104

    CAS  Google Scholar 

  45. Trabold T, Buchgeister M, Kuttner A, Heuschmid M, Kopp AF, Schroder S et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Fortschr Röntgenstr 175(8):1051–1055

    Article  CAS  Google Scholar 

  46. Yamamuro M, Tadamura E, Kanao S, Wu YW, Tambara K, Komeda M et al (2007) Coronary angiography by 64-detector row computed tomography using low dose of contrast material with saline chaser: influence of total injection volume on vessel attenuation. J Comput Assist Tomogr 31(2):272–280

    Article  PubMed  Google Scholar 

  47. Cademartiri F, Mollet N, van der Lugt A, Nieman K, Pattynama PM, de Feyter PJ et al (2004) Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 14(2):178–183

    Article  PubMed  Google Scholar 

  48. Gosse P (2005) Left ventricular hypertrophy as a predictor of cardiovascular risk. J Hypertens Suppl 23(1):S27–S33

    Article  PubMed  CAS  Google Scholar 

  49. Kahan T (1998) The importance of left ventricular hypertrophy in human hypertension. J Hypertens Suppl 16(7):S23–S29

    PubMed  CAS  Google Scholar 

  50. Brown DW, Giles WH, Croft JB (2000) Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J 140(6):848–856

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorka Bastarrika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastarrika, G., Arraiza, M., Pueyo, J.C. et al. Quantification of left ventricular function and mass in cardiac Dual-Source CT (DSCT) exams: comparison of manual and semiautomatic segmentation algorithms. Eur Radiol 18, 939–946 (2008). https://doi.org/10.1007/s00330-007-0849-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0849-x

Keywords

Navigation