Skip to main content
Log in

Characterization of the peri-infarction zone using T2-weighted MRI and delayed-enhancement MRI in patients with acute myocardial infarction

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To characterize the peri-infarction zone using T2-weighted (T2w) magnetic resonance imaging (MRI) and infarct size on delayed enhancement (DE) MRI in patients with acute myocardial infarction (AMI). In 65 patients, short-axis T2w and DE MRI images were acquired 5 ± 3 d after AMI. The MRI was analyzed using a threshold method defining infarct size on DE MRI and edema on T2w MRI as areas with signal intensity larger than +2 SD above remote normal myocardium. The peri-infarction zone was calculated as the difference between the size of edema and the infarct size. The size of edema on T2w MRI (31.3 ± 13.4% of LV area) was larger than the infarct size on DE MRI (20.3 ± 10.4% of LV area, p< 0.0001). The size of the peri-infarction zone was 11.0 ± 10.0% of the LV area. Good correlation was found between infarct size on DE MRI and peak creatine kinase (CK) isoenzyme MB (r = 0.65, p< 0.0001), but there was no correlation between the size of the peri-infarction zone and CK MB (r = 0.05, p = 0.67). The peri-infarction zone was larger in patients with an infarct size <28% of the LV area (12.6 ± 10.0% LV area) compared with patients with an infarct size ≥28% of the LV area (6.7 ± 9.0% of the LV area, p< 0.05). The peri-infarction zone does not correlate with enzymatic parameters of infarct size and is substantially larger in small infarcts, indicating viable myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    PubMed  CAS  Google Scholar 

  2. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  3. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  4. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri_infarction zone of reperfused myocardial infarction with necrosis_specific and extracellular nonspecific contrast media. Circulation 103:871–876

    PubMed  CAS  Google Scholar 

  5. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105:224–229

    Article  PubMed  Google Scholar 

  6. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  7. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232:49–57

    Article  PubMed  Google Scholar 

  8. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    PubMed  CAS  Google Scholar 

  9. Comte A, Lalande A, Walker PM, Coche A, Legrand L, Cottin Y, Wolf JE, Brunotte F (2004) Visual estimation of the global myocardial extent of hyperenhancement on delayed contrast-enhanced MRI. Eur Radiol 14:2182–2187

    Article  PubMed  Google Scholar 

  10. Whalen DA Jr, Hamilton DG, Ganote CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74:381–397

    PubMed  CAS  Google Scholar 

  11. DiBona DR, Powell WJ Jr (1980) Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circ Res 47:653–665

    PubMed  CAS  Google Scholar 

  12. Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57:864–875

    PubMed  CAS  Google Scholar 

  13. Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278

    PubMed  CAS  Google Scholar 

  14. Stork A, Lund GK, Bansmann M, Kemper J, Weiss F, Steiner P, Meinertz T, Adam G (2003) Comparison of an Edema-sensitive HASTE-TIRM Sequence with Delayed Contrast Enhancement in Acute Myocardial Infarcts. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:194–198

    Article  PubMed  CAS  Google Scholar 

  15. Miller S, Helber U, Kramer U, Hahn U, Carr J, Stauder NI, Hoffmeister HM, Claussen CD (2001) Subacute myocardial infarction: assessment by STIR T2-weighted MR imaging in comparison to regional function. Magma 13:8–14

    Article  PubMed  CAS  Google Scholar 

  16. Lim TH, Hong MK, Lee JS, Mun CW, Park SJ, Park SW, Ryu JS, Lee JH, Chien D, Laub G (1997) Novel application of breath-hold turbo spin-echo T2 MRI for detection of acute myocardial infarction. J Magnet Reson Imag 7:996–1001

    Article  CAS  Google Scholar 

  17. Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  18. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416

    Article  PubMed  Google Scholar 

  19. Saeed M, Saloner D, Weber O, Martin A, Henk C, Higgins C (2005) MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15:851–863

    Article  PubMed  CAS  Google Scholar 

  20. Karolle BL, Carlson RE, Aisen AM, Buda AJ (1991) Transmural distribution of myocardial edema by NMR relaxometry following myocardial ischemia and reperfusion. Am Heart J 122:655–664

    Article  PubMed  CAS  Google Scholar 

  21. Brown JJ, Peterson TM, Slutsky RA (1985) Regional myocardial blood flow, edema formation, and magnetic relaxation times during acute myocardial ischemia in the canine. Invest Radiol 20:465–471

    Article  PubMed  CAS  Google Scholar 

  22. Slutsky RA, Brown JJ, Peck WW, Strich G, Andre MP (1984) Effects of transient coronary ischemia and reperfusion on myocardial edema formation and in vitro magnetic relaxation times. J Am Coll Cardiol 3:1454–1460

    Article  PubMed  CAS  Google Scholar 

  23. Boxt LM, Hsu D, Katz J, Detweiler P, McLaughlin S, Kolb TJ, Spotnitz HM (1993) Estimation of myocardial water content using transverse relaxation time from dual spin-echo magnetic resonance imaging. Magn Reson Imag 11:375–383

    Article  CAS  Google Scholar 

  24. GarciaDorado D, Oliveras J, Gili J, Sanz E, PerezVilla F, Barrabes J, Carreras MJ, Solares J, SolerSoler J (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–1469

    Article  PubMed  CAS  Google Scholar 

  25. Higgins CB, Herfkens R, Lipton MJ, Sievers R, Sheldon P, Kaufman L, Crooks LE (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52:184–188

    Article  PubMed  CAS  Google Scholar 

  26. Dymarkowski S, Ni Y, Miao Y, Bogaert J, Rademakers F, Bosmans H, Marchal G (2002) Value of t2-weighted magnetic resonance imaging early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted magnetic resonance imaging and functional data from cine magnetic resonance imaging. Invest Radiol 37:77–85

    Article  PubMed  Google Scholar 

  27. Pislaru SV, Ni Y, Pislaru C, Bosmans H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marchal G, Van de Werf FJ (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696

    PubMed  CAS  Google Scholar 

  28. Bouchard A, Reeves RC, Cranney G, Bishop SP, Pohost GM (1989) Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic resonance imaging. Am Heart J 117:281–289

    Article  PubMed  CAS  Google Scholar 

  29. TIMI Group (1985) The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med 312:932–936

    Google Scholar 

  30. Stehling MK, Holzknecht NG, Laub G, Bohm D, von Smekal A, Reiser M (1996) Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. Magma 4:231–240

    Article  PubMed  CAS  Google Scholar 

  31. Wu KC, Kim RJ, Bluemke DA, Rochitte CE, Zerhouni EA, Becker LC, Lima JA (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  32. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    PubMed  CAS  Google Scholar 

  33. Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  34. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed  CAS  Google Scholar 

  35. Parizel PM, Makkat S, Van Miert E, Van Goethem JW, van den Hauwe L, De Schepper AM (2001) Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol 11:1770–1783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stork.

Additional information

This study was funded in part by Pinguin-Stiftung, Duesseldorf, Germany and by Schering Company, Berlin, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stork, A., Lund, G.K., Muellerleile, K. et al. Characterization of the peri-infarction zone using T2-weighted MRI and delayed-enhancement MRI in patients with acute myocardial infarction. Eur Radiol 16, 2350–2357 (2006). https://doi.org/10.1007/s00330-006-0232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0232-3

Keywords

Navigation