Skip to main content
Log in

Magnetic resonance imaging of atherosclerosis

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Abundant data now link composition of the vascular wall, rather than the degree of luminal narrowing, with the risk for acute ischemic syndromes in the coronary, central nervous system, and peripheral arterial beds. Over the past few years, magnetic resonance angiography has evolved as a well-established method to determine the location and severity of advanced, lumen-encroaching atherosclerotic lesions. In addition, more recent studies have shown that high spatial resolution, multisequence MRI is also a promising tool for noninvasive, serial imaging of the aortic and carotid vessel wall, which potentially can be applied in the clinical setting. Because of the limited spatial resolution of current MRI techniques, characterization of coronary vessel wall atherosclerosis, however, is not yet possible and remains the holy grail of plaque imaging. Recent technical developments in MRI technology such as dedicated surface coils, the introduction of 3.0-T high-field systems and parallel imaging, as well as developments in the field of molecular imaging such as contrast agents targeted to specific plaque constituents, are likely to lead to the necessary improvements in signal to noise ratio, imaging speed, and specificity. These improvements will ultimately lead to more widespread application of this technology in clinical practice. In the present review, the current status and future role of MRI for plaque detection and characterization are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Heart Association (2003) Heart disease and stroke statistics—2004 update. American Heart Association, Dallas, TX

    Google Scholar 

  2. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  PubMed  Google Scholar 

  3. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  4. Rose SC, Nelson TR (2004) Ultrasonographic modalities to assess vascular anatomy and disease. J Vasc Interv Radiol 15:25–38

    Google Scholar 

  5. Yucel EK, Anderson CM, Edelman RR et al (1999) AHA scientific statement: magnetic resonance angiography: update on applications for extracranial arteries. Circulation 100:2284–2301

    Google Scholar 

  6. Fayad ZA, Fuster V (2000) Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 902:173–186

    Google Scholar 

  7. Fayad ZA, Fuster V, Nikolaou K, Becker C (2002) Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 106:2026–2034

    Google Scholar 

  8. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    CAS  PubMed  Google Scholar 

  9. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  10. Trion A, van der Laarse A (2004) Vascular smooth muscle cells and calcification in atherosclerosis. Am Heart J 147:808–814

    Article  Google Scholar 

  11. Kwon HM, Sangiorgi G, Ritman EL et al (1998) Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 101:1551–1556

    Google Scholar 

  12. Pasterkamp G, Galis ZS, de Kleijn DP (2004) Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 24:650–657

    Article  Google Scholar 

  13. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106:296–299

    Article  Google Scholar 

  14. Lutgens E, van Suylen RJ, Faber BC et al (2003) Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol 23:2123–2130

    Article  Google Scholar 

  15. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW (2000) Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 343:915–922

    Article  Google Scholar 

  16. Rioufol G, Finet G, Ginon I et al (2002) Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 106:804–808

    Article  Google Scholar 

  17. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    Google Scholar 

  18. Moody AR (2003) Magnetic resonance direct thrombus imaging. J Thromb Haemost 1:1403–1409

    Article  Google Scholar 

  19. Murphy RE, Moody AR, Morgan PS et al (2003) Prevalence of complicated carotid atheroma as detected by magnetic resonance direct thrombus imaging in patients with suspected carotid artery stenosis and previous acute cerebral ischemia. Circulation 107:3053–3058

    Article  Google Scholar 

  20. Cappendijk VC, Cleutjens KB, Heeneman S et al (2004) In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging. J Magn Reson Imaging 20:105–110

    Article  Google Scholar 

  21. Bradley WG Jr (1993) MR appearance of hemorrhage in the brain. Radiology 189:15–26

    PubMed  Google Scholar 

  22. Shinnar M, Fallon JT, Wehrli S et al (1999) The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 19:2756–2761

    CAS  PubMed  Google Scholar 

  23. Yuan C, Mitsumori LM, Ferguson MS et al (2001) In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104:2051–2056

    CAS  PubMed  Google Scholar 

  24. Serfaty JM, Chaabane L, Tabib A, Chevallier JM, Briguet A, Douek PC (2001) Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging—an in vitro study. Radiology 219:403–410

    CAS  PubMed  Google Scholar 

  25. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C (2003) In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging 17:410–420

    Article  PubMed  Google Scholar 

  26. Zhao XQ, Yuan C, Hatsukami TS et al (2001) Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 21:1623–1629

    Google Scholar 

  27. von Ingersleben G, Schmiedl UP, Hatsukami TS et al (1997) Characterization of atherosclerotic plaques at the carotid bifurcation: correlation of high-resolution MR imaging with histologic analysis—preliminary study. Radiographics 17:1417–1423

    Google Scholar 

  28. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373

    Google Scholar 

  29. Yuan C, Tsuruda JS, Beach KN et al (1994) Techniques for high-resolution MR imaging of atherosclerotic plaque. J Magn Reson Imaging 4:43–49

    Google Scholar 

  30. Yuan C, Petty C, O’Brien KD, Hatsukami TS, Eary JF, Brown BG (1997) In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Arterioscler Thromb Vasc Biol 17:1496–1503

    Google Scholar 

  31. Fayad ZA, Connick TJ, Axel L (1995) An improved quadrature or phased-array coil for MR cardiac imaging. Magn Reson Med 34:186–193

    Google Scholar 

  32. Hayes CE, Mathis CM, Yuan C (1996) Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging 6:109–112

    Google Scholar 

  33. Ouhlous M, Lethimonnier F, Dippel DW et al (2002) Evaluation of a dedicated dual phased-array surface coil using a black-blood FSE sequence for high resolution MRI of the carotid vessel wall. J Magn Reson Imaging 15:344–351

    Article  Google Scholar 

  34. Quick HH, Debatin JF, Ladd ME (2002) MR imaging of the vessel wall. Eur Radiol 12:889–900

    Article  PubMed  Google Scholar 

  35. Schär M, Kim WY, Stuber M, Boesiger P, Manning WJ, Botnar RM (2003) The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging 17:538–544

    Article  Google Scholar 

  36. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  37. Botnar RM, Bucker A, Kim WY, Viohl I, Gunther RW, Spuentrup E (2003) Initial experiences with in vivo intravascular coronary vessel wall imaging. J Magn Reson Imaging 17:615–619

    Article  Google Scholar 

  38. Worthley SG, Helft G, Fuster V et al (2003) A novel nonobstructive intravascular MRI coil: in vivo imaging of experimental atherosclerosis. Arterioscler Thromb Vasc Biol 23:346–350

    Article  Google Scholar 

  39. Hillenbrand CM, Wong B, Griswold MA et al (2004) Intravascular parallel imaging: a feasibility study. International society for magnetic resonance in medicine. ISMRM, Kyoto, Japan, p 376

    Google Scholar 

  40. Quick HH, Ladd ME, Nanz D, Mikolajczyk KP, Debatin JF (1999) Vascular stents as RF antennas for intravascular MR guidance and imaging. Magn Reson Med 42:738–745

    Google Scholar 

  41. Quick HH, Zenge MO, Kuehl H et al (2004) Interventional MRA with no strings attached: wireless active catheter visualization. Internal society for magnetic resonance in medicine. ISMRM, Kyoto, Japan, p 327

    Google Scholar 

  42. Weiger M, Pruessmann KP, Kassner A et al (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    Article  CAS  PubMed  Google Scholar 

  43. Finn JP, Edelman RR (1993) Black-blood and segmented k-space magnetic resonance angiography. Magn Reson Imaging Clin N Am 1:349–357

    Google Scholar 

  44. Edelman RR, Chien D, Kim D (1991) Fast selective black blood MR imaging. Radiology 181:655–660

    Google Scholar 

  45. Fleckenstein JL, Archer BT, Barker BA, Vaughan JT, Parkey RW, Peshock RM (1991) Fast short-tau inversion-recovery MR imaging. Radiology 179:499–504

    Google Scholar 

  46. Fayad ZA, Fuster V (2002) Atherothrombotic plaques and the need for imaging. Neuroimaging Clin N Am 12:351–364

    Google Scholar 

  47. Song HK, Wright AC, Wolf RL, Wehrli FW (2002) Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med 47:616–620

    Google Scholar 

  48. Parker DL, Goodrich KC, Masiker M, Tsuruda JS, Katzman GL (2002) Improved efficiency in double-inversion fast spin-echo imaging. Magn Reson Med 47:1017–1021

    Google Scholar 

  49. Yarnykh VL, Yuan C (2003) Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. J Magn Reson Imaging 17:478–483

    Article  Google Scholar 

  50. Itskovich VV, Mani V, Mizsei G et al (2004) Parallel and nonparallel simultaneous multislice black-blood double inversion recovery techniques for vessel wall imaging. J Magn Reson Imaging 19:459–467

    Article  Google Scholar 

  51. Steinman DA, Rutt BK (1998) On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 39:635–641

    Google Scholar 

  52. Hatsukami TS, Ross R, Polissar NL, Yuan C (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102:959–964

    CAS  PubMed  Google Scholar 

  53. Yuan C, Kerwin WS, Ferguson MS et al (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15:62–67

    Article  PubMed  Google Scholar 

  54. Wasserman BA, Smith WI, Trout HH III, Cannon RO III, Balaban RS, Arai AE (2002) Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 223:566–573

    PubMed  Google Scholar 

  55. Kerwin W, Hooker A, Spilker M et al (2003) Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 107:851–856

    Google Scholar 

  56. Kerwin WS, O’Brien KD, Ferguson M, Hatsukami T, Yuan C (2004) Dynamic contrast-enhanced MRI markers of inflammation in carotid atherosclerosis. Proc Int Soc Magn Reson Med 11:454

    Google Scholar 

  57. Yarnykh VL, Yuan C (2002) T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med 48:899–905

    Google Scholar 

  58. Sirol M, Itskovich VV, Mani V et al (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896

    Google Scholar 

  59. Pell GS, Lewis DP, Branch CA (2003) Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal. Magn Reson Med 49:341–350

    Google Scholar 

  60. Yuan C, Miller ZE, Cai J, Hatsukami T (2002) Carotid atherosclerotic wall imaging by MRI. Neuroimaging Clin N Am 12:391–401

    Google Scholar 

  61. Fayad ZA, Nahar T, Fallon JT et al (2000) In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101:2503–2509

    Google Scholar 

  62. Fayad ZA, Fuster V, Fallon JT et al (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510

    Google Scholar 

  63. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    Google Scholar 

  64. Toussaint JF, Southern JF, Fuster V, Kantor HL (1995) T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler Thromb Vasc Biol 15:1533–1542

    Google Scholar 

  65. Yuan C, Hatsukami TS, Obrien KD (2001) High-resolution magnetic resonance imaging of normal and atherosclerotic human coronary arteries ex vivo: discrimination of plaque tissue components. J Investig Med 49:491–499

    Google Scholar 

  66. Yuan C, Mitsumori LM, Beach KW, Maravilla KR (2001) Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221:285–299

    CAS  PubMed  Google Scholar 

  67. Yuan C, Zhang SX, Polissar NL et al (2002) Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105:181–185

    Article  Google Scholar 

  68. Cappendijk VC, Cleutjens KB, Kessels AG et al (2005) Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology 234:487–492

    Google Scholar 

  69. Chan SK, Jaffer FA, Botnar RM et al (2001) Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden. J Cardiovasc Magn Reson 3:331–338

    Article  Google Scholar 

  70. Jaffer FA, O’Donnell CJ, Larson MG et al (2002) Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 22:849–854

    Article  Google Scholar 

  71. Corti R, Fuster V, Fayad ZA et al (2002) Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106:2884–2887

    Article  Google Scholar 

  72. Walker LJ, Ismail A, McMeekin W, Lambert D, Mendelow AD, Birchall D (2002) Computed tomography angiography for the evaluation of carotid atherosclerotic plaque: correlation with histopathology of endarterectomy specimens. Stroke 33:977–981

    Article  PubMed  Google Scholar 

  73. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  Google Scholar 

  74. Becker CR, Nikolaou K, Muders M et al (2003) Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 13:2094–2098

    Article  Google Scholar 

  75. Nikolaou K, Sagmeister S, Knez A et al (2003) Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 13:2505–2512

    Article  PubMed  Google Scholar 

  76. Yuan C, Kerwin WS (2004) MRI of atherosclerosis. J Magn Reson Imaging 19:710–719

    Article  Google Scholar 

  77. Botnar RM, Stuber M, Lamerichs R et al (2003) Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla. J Cardiovasc Magn Reson 5:589–594

    Article  Google Scholar 

  78. Berg A, Sailer J, Rand T, Moser E (2003) Diffusivity- and T2 imaging at 3 Tesla for the detection of degenerative changes in human-excised tissue with high resolution: atherosclerotic arteries. Invest Radiol 38:452–459

    Article  Google Scholar 

  79. Maki JH, Wilson GJ, Lauffer RB, Weiskoff RM, Yuan C (2001) Apparent vessel wall inflammation detected using MS-325, blood pool contrast agent. Proc Int Soc Magn Reson Med 9:639

    Google Scholar 

  80. Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  Google Scholar 

  81. Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    Article  CAS  PubMed  Google Scholar 

  82. Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    CAS  PubMed  Google Scholar 

  83. Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Google Scholar 

  84. Botnar RM, Buecker A, Wiethoff AJ et al (2004) In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 110:1463–1466

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Geertjan van Zonneveld and Dr Sylvia Heeneman of the Audiovisual Department and Department of Pathology, Maastricht University Hospital, for assistance with preparation of Figs. 1 and 3. In addition, the authors would also like to express their gratitude to Drs Lee Mitsumori and Chun Yuan of the Department of Radiology, University of Washington, Seattle, WA, USA, for contributing Fig. 2, and to Dr Won Yong Kim of the MR-Center and Department of Cardiology, Aarhus University Hospital, and Skejby Sygehus, Aarhus, Denmark, for contributing Fig. 5. Financial support of The Netherlands Organization for Scientific Research (NWO VENI Grant 916.46.034 [Dr. Leiner]) and The Netherlands Heart Foundation (Project number 2000.173) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Leiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiner, T., Gerretsen, S., Botnar, R. et al. Magnetic resonance imaging of atherosclerosis. Eur Radiol 15, 1087–1099 (2005). https://doi.org/10.1007/s00330-005-2646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2646-8

Keywords

Navigation