Skip to main content
Log in

MR-based coronary artery blood velocity measurements in patients without coronary artery disease

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To evaluate the feasibility of MR-based coronary blood velocity measurements (MRvenc) in patients without coronary artery disease (CAD). Eighty-three patients with angiographically excluded CAD received MRvenc of the proximal segments of both coronary arteries (CAs). Using a retrospectively ECG-gated breath-hold phase-contrast FLASH sequence with high temporal resolution, flow data were technically acquirable in 137/166 (83%) CAs. Quantification and analysis of blood velocities in systole and diastole of both CAs were performed. Biphasic velocity profiles were found in 83/100 CAs. Median systolic and diastolic velocities differed significantly in LCA (19 cm/s, 24 cm/s; P<0.0001) and RCAs (14 cm/s, 16 cm/s; P<0.01). The diastolic/systolic velocity ratio was calculated in LCAs and RCAs with a median of 1.3 and 1.1, respectively. The velocity profiles of the remaining CAs were monophasic (17 CAs) or revealed severe alterations of the physiologic velocity profile with reduced flow undulations and steady velocities (37 CAs). Optimized clinical MRvenc is feasible to quantify blood velocities in the CAs. Potential indications are (1) non-invasive monitoring of patients after aortic valve reconstruction as well as (2) detection of asymptomatic CAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doucette JW, Corl PD, Payne HM et al (1992) Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85:1899–1911

    PubMed  CAS  Google Scholar 

  2. Wilson RF, Laughlin DE, Ackell PH et al (1985) Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72:82–92

    PubMed  CAS  Google Scholar 

  3. Ofili EO, Labovitz AJ, Kern MJ (1993) Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol 71:3D–9D

    Article  PubMed  CAS  Google Scholar 

  4. Voudris V, Manginas A, Vassilikos V, Koutelou M, Kantzis J, Cokkinos DV (1996) Coronary flow velocity changes after intravenous dipyridamole infusion: measurements using intravascular Doppler guide wire. A documentation of flow inhomogeneity. J Am Coll Cardiol 27:1148–1155

    Article  PubMed  CAS  Google Scholar 

  5. Redberg RF, Sobol Y, Chou TM et al (1995) Adenosine-induced coronary vasodilation during transesophageal Doppler echocardiography. Rapid and safe measurement of coronary flow reserve ratio can predict significant left anterior descending coronary stenosis. Circulation 92:190–196

    PubMed  CAS  Google Scholar 

  6. Hozumi T, Yoshida K, Ogata Y et al (1998) Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 97:1557–1562

    PubMed  CAS  Google Scholar 

  7. Alfakih K, Reid S, Jones T, Sivananthan M (2004) Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14:1813–1822

    Article  PubMed  Google Scholar 

  8. Edelman RR, Manning WJ, Gervino E, Li W (1993) Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography. J Magn Reson Imaging 3:699–703

    Article  PubMed  CAS  Google Scholar 

  9. Poncelet BP, Weisskoff RM, Wedeen VJ, Brady TJ, Kantor H (1993) Time of flight quantification of coronary flow with echo-planar MRI. Magn Reson Med 30:447–457

    Article  PubMed  CAS  Google Scholar 

  10. Chao H, Burstein D (1997) Multibolus stimulated echo imaging of coronary artery flow. J Magn Reson Imaging 7:603–605

    Article  PubMed  CAS  Google Scholar 

  11. Szolar DH, Sakuma H, Higgins CB (1996) Cardiovascular applications of magnetic resonance flow and velocity measurements. J Magn Reson Imaging 6:78–89

    Article  PubMed  CAS  Google Scholar 

  12. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    PubMed  Google Scholar 

  13. Kreitner KF, Ehrhard K, Kunz RP et al (2004) Non-invasive assessment of coronary artery bypass grafts--an update. Röfo 176:1079–1088

    PubMed  Google Scholar 

  14. Abolmaali ND, Esmaeili A, Feist P et al (2004) Reference values of MRI flow measurements of the pulmonary outflow tract in healthy children. Röfo 176:837–845

    PubMed  CAS  Google Scholar 

  15. Langerak SE, Vliegen HW, Jukema JW et al (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

    Article  PubMed  CAS  Google Scholar 

  16. Hofman MB, van Rossum AC, Sprenger M, Westerhof N (1996) Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med 35:521–531

    PubMed  CAS  Google Scholar 

  17. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195:471–478

    PubMed  CAS  Google Scholar 

  18. Davis CP, Liu P, Hauser M, Gohde SC, von Schulthess GK, Debatin JF (1997) Measurement of coronary blood flow and flow reserve measurements in humans with breath-hold magnetic resonance phase contrast velocity mapping. Magn Reson Imaging Med 37:537–544

    Article  CAS  Google Scholar 

  19. Wielopolski PA, Geuns RJMv, Feyter PJd, Oudkerk M (1998) Coronary arteries. Eur Radiol 8:873–885

    Article  PubMed  CAS  Google Scholar 

  20. Gatehouse PD, Keegan J, Crowe LA et al (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol

  21. Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T (1999) Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guide wire. J Magn Reson Imaging 10:563–568

    Article  PubMed  CAS  Google Scholar 

  22. Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576

    Article  PubMed  CAS  Google Scholar 

  23. Saito Y, Sakuma H, Shibata M et al (2001) Assessment of coronary flow velocity reserve using fast velocity-encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Magn Reson 3:209–214

    Article  PubMed  CAS  Google Scholar 

  24. Lund GK, Watzinger N, Saeed M et al (2003) Chronic heart failure: global left ventricular perfusion and coronary flow reserve with velocity-encoded cine MR imaging: initial results. Radiology 227:209–215

    Article  PubMed  Google Scholar 

  25. Ibrahim T, Nekolla SG, Schreiber K et al (2002) Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 39:864–870

    Article  PubMed  Google Scholar 

  26. Grist TM, Polzin JA, Bianco JA, Foo TK, Bernstein MA, Mistretta CM (1997) Measurement of coronary blood flow and flow reserve using magnetic resonance imaging. Cardiology 88:80–89

    Article  PubMed  CAS  Google Scholar 

  27. Kuijpers D, Janssen CH, van Dijkman PR, Oudkerk M (2004) Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:1823–1828

    PubMed  Google Scholar 

  28. Kuijpers D, van Dijkman PR, Janssen CH, Vliegenthart R, Zijlstra F, Oudkerk M (2004) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:2046–2052

    Article  PubMed  Google Scholar 

  29. Sakuma H, Saeed M, Takeda K et al (1997) Quantification of coronary artery volume flow rate using fast velocity-encoded cine MR imaging. AJR Am J Roentgenol 168:1363–1367

    PubMed  CAS  Google Scholar 

  30. Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  31. Barkhausen J, Hunold P, Waltering KU (2004) MRI in coronary artery disease. Eur Radiol 14:2155–2162

    Article  PubMed  Google Scholar 

  32. Berne RM, Sperelakis N (1979) Handbook of physiology: the cardiovascular system, vol. I: the heart. The American Physiological Society, Bethesda

  33. Marcus JT, Smeenk HG, Kuijer JP, Van der Geest RJ, Heethaar RM, Van Rossum AC (1999) Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr 23:567–576

    Article  PubMed  CAS  Google Scholar 

  34. Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87:94–104

    PubMed  CAS  Google Scholar 

  35. Wolf RL, Ehman RL, Riederer SJ, Rossman PJ (1993) Analysis of systemic and random error in MR volumetric flow measurements. Magn Reson Imaging Med 30:82–91

    Article  CAS  Google Scholar 

  36. Saraste M, Koskenvuo J, Knuuti J et al (2001) Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122

    Article  PubMed  CAS  Google Scholar 

  37. Sakuma H, Koskenvuo JW, Niemi P et al (2000) Assessment of coronary flow reserve using fast velocity-encoded cine MR imaging: validation study using positron emission tomography. AJR Am J Roentgenol 175:1029–1033

    PubMed  CAS  Google Scholar 

  38. Toyoshima T, Nomura M, Nishikado A, Harada M, Nakaya Y, Ito S (2000) Magnetic resonance coronary angiography in patients with ischemic heart disease: analysis of coronary arterial blood flow velocity pattern. Jpn Heart J 41:153–164

    Article  PubMed  CAS  Google Scholar 

  39. Sakuma H, Kawada N, Takeda K, Higgins CB (1999) MR measurement of coronary blood flow. J Magn Reson Imaging 10:728–733

    Article  PubMed  CAS  Google Scholar 

  40. Ishida N, Sakuma H, Cruz BP et al (2001) MR flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radiographic angiography. Radiology 220:441–447

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Abolmaali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiemann, M., Bakhtiary, F., Hietschold, V. et al. MR-based coronary artery blood velocity measurements in patients without coronary artery disease. Eur Radiol 16, 1124–1130 (2006). https://doi.org/10.1007/s00330-005-0039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0039-7

Keywords

Navigation