Skip to main content
Log in

MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The influence of iron deposits on T2 values and the content of metabolites in the brain of three patients with DNA proved pantothenate kinase-associated neurodegeneration (PKAN, formerly Hallervorden-Spatz syndrome) was studied. An eye-of-the-tiger sign, a typical MR finding for PKAN, was observed in two patients with the same mutation. A hypointensive lesion in a whole globus pallidus was observed in the third patient with the additional mutation. T2 values in the globus pallidus of the patients were about 40% shorter than in controls (71/48 ms in controls vs. patients), which corresponds to the increase of Fe concentration based on the ferritin basis from 17 mg for controls to 48 mg (100 g wet brain weight) in PKAN patients. 1H MR spectroscopy (MRS) has mainly been used to describe neuronal damage represented by decreased NAA (6.4 mmol vs. 9 mmol) and Cr/PCr (7.0 mmol vs. 9.8 mmol) concentrations in the basal ganglia region of the patient group to controls; MRS is much more case-sensitive and describes individual development of the disease as demonstrated in the difference between the spectra of typical PKAN patients (1, 2), and the patient (3) with atypical PKAN development. Any significant changes of metabolite concentration with the exception glutamine, glutamate and GABA were found in the white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayflick SJ (2003) Pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome). J Neurol Sci 207:106–107

    Article  PubMed  Google Scholar 

  2. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349

    Article  CAS  PubMed  Google Scholar 

  3. Vogl T, Bauer M, Seiderer M, Rath M (1984) Nuclear magnetic resonance in the Hallervorden-Spatz syndrome. Digitale Bilddiagn 4(2):66–68

    CAS  PubMed  Google Scholar 

  4. Littrup PJ, Gebarski SS (1985) MR imaging of Hallervorden-Spatz disease. J Comput Assist Tomogr 9(3):491–493

    CAS  PubMed  Google Scholar 

  5. Pedespan JM, Fontan D, Castell JF, Langlade P, Guillard JM (1993) Contribution of nuclear magnetic imaging in the diagnosis of Hallervorden-Spatz syndrome. Arch Fr Pediatr 50(1):35–37

    CAS  PubMed  Google Scholar 

  6. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348(1):33–40

    Article  CAS  PubMed  Google Scholar 

  7. Perry TL, Norman MG, Yong VW, Whiting S, Crichton JU, Hansen S, Kish SJ (1985) Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann Neurol 18:482–489

    CAS  PubMed  Google Scholar 

  8. Rouault TA (2001) Iron on the brain. Nat Genet 28(4):299–300

    Article  CAS  PubMed  Google Scholar 

  9. Vymazal J, Brooks RA, Patronas N, Hajek M, Bulte JWM, Di Chiro G (1995) Magnetic resonance imaging of brain iron in health and disease. J Neurol Sci 134(Suppl):19–26

    Article  CAS  PubMed  Google Scholar 

  10. Roy CN, Andrews NC (2001) Recent advances in disorders of iron metabolism: mutation, mechanism and modifiers. Hum Mol Genet 10:2181–2186

    Article  CAS  PubMed  Google Scholar 

  11. Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G (1992) T1 and T2 of ferritin at different field strengths: effect on MRI. Magn Reson Med 27(2):368–374

    CAS  PubMed  Google Scholar 

  12. Bulte JWM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1992) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648

    Google Scholar 

  13. Brooks RA, Vymazal J, Bulte JWM, Baumgarner CD, Tran V (1995) Comparison of T2 relaxation in blood, brain and ferritin. J Magn Reson Imaging 5(4):446–450

    CAS  PubMed  Google Scholar 

  14. Allkemper T, Schwindt W, Maintz D, Heindel W, Tombach B (2004) Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0T. Eur Radiol 14:1000–1004

    Article  PubMed  Google Scholar 

  15. Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A (1993) Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 35(2):119–124

    CAS  PubMed  Google Scholar 

  16. Dezortová M, Hájek M, Tintěra J, Hejcmanová L, Syková E (2001) MR in phenylketonuria-related brain lesions. Acta Radiol 42(5):459–466

    Article  PubMed  Google Scholar 

  17. Herynek V, Babis M, Trunecka P, Filip K, Vymazal J, Dezortova M, Hajek M (2001) Chronic liver disease: relaxometry in the brain after liver transplantation. MAGMA 12(1):10–15

    CAS  PubMed  Google Scholar 

  18. Starcuk Z, Starcukova J (2003) Determination of conficence region of model parameters in mono- and biexponential fitting of relaxation curves. Proc Int Soc Mag Reson Med 11:1102

    Google Scholar 

  19. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    CAS  PubMed  Google Scholar 

  20. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  PubMed  Google Scholar 

  21. Hájek M, Burian M, Dezortová M (2000) Application of LCModel for quality control and quantitative in vivo 1H MR spectroscopy by short echo time STEAM sequence. MAGMA 10:6–17

    PubMed  Google Scholar 

  22. Jírů F, Dezortová M, Burian M, Hájek M (2003) The role of relaxation time corrections for the evaluation of long and short echo time 1H MR spectra of the hippocampus by NUMARIS and LCModel techniques. MAGMA 16:135–143

    PubMed  Google Scholar 

  23. Sener RN (2003) Pantothenate kinase-associated neurodegeneration: MR imaging, proton MR spectroscopy, and diffusion MR imaging findings. Am J Neuroradiol 24:1690–1693

    PubMed  Google Scholar 

  24. Dooling EC, Schoene WC, Richardson EP Jr (1974) Hallervorden-Spatz syndrome. Arch Neurol 30:70–83

    CAS  PubMed  Google Scholar 

  25. Vakili S, Drew AL, Von Schuching S, Becker D, Zeman W (1977) Hallervorden-Spatz syndrome. Arch Neurol 34:729–738

    CAS  PubMed  Google Scholar 

  26. Voelkl A, Ule G (1972) Spurenelementen im menschlichen Gehirn:Altersabhaengigkeit der Eisenkoncentration in 13 verschiedenen Hirnregionen. J Neurol 202:331–338

    Article  CAS  Google Scholar 

  27. Vymazal J, Hajek M, Patronas N, Giedd JN, Bulte JWM, Baumgarner BS, Tran V, Brooks RA (1995) The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J Magn Reson Imaging 5:554–560

    CAS  PubMed  Google Scholar 

  28. Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5

    Article  CAS  PubMed  Google Scholar 

  29. Koga H, Kondo A, Kimura T, Takamatsu J (1998) Familial multiple system degeneration associated with iron deposition: determination of subcellular localization of elementary iron by energy-dispersive X-ray analysis. Clin Neuropathol 17:35–40

    CAS  PubMed  Google Scholar 

  30. Furia TE (2001) CRC handbook of food additives, 2nd edn. Stability constants (log K1) of various metal chelates (web compilation-latest revision May 28, 2001). CRC, Boca Raton

    Google Scholar 

  31. Vymazal J, Bulte JW, Frank JA, Di Chiro G, Brooks RA (1993) Frequency dependence of MR relaxation times. I. Paramagnetic ions. J Magn Reson Imaging 3:637–640

    CAS  PubMed  Google Scholar 

  32. Atamna H, Walter PB, Ames BN (2002) The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 397:345–353

    Article  CAS  PubMed  Google Scholar 

  33. Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22:5848–5855

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The study was supported by grant projects: Grant Agency of Czech Republic No. 304/03/1189 and CEZ:L17/98:00023001, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hájek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájek, M., Adamovičová, M., Herynek, V. et al. MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients. Eur Radiol 15, 1060–1068 (2005). https://doi.org/10.1007/s00330-004-2553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2553-4

Keywords

Navigation