Skip to main content

Advertisement

Log in

Mollusc species richness and abundance from shelf to abyssal depths in the Ross Sea (Antarctica): the importance of fine-mesh-towed gears and implications for future sampling

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In polar areas, where benthic sampling is constrained by a series of limitations imposed by climate and logistic challenges, knowledge about the key elements required to plan a successful survey is fundamental. During the International Polar Year (IPY, 2007/2008), under the Census of Antarctic Marine Life (CAML), new sampling campaigns were undertaken in several Antarctic areas comprising the Ross Sea. In this region, the 2008 NIWA IPY-CAML voyage obtained benthos samples from shelf to abyssal depths. In the present study, we focus on the Mollusca from this expedition and on the possible variations in their richness and composition with latitude and depth. Given the use of sampling gears selective for different size fractions of the macrofauna, we also assess which size fraction contained the highest biodiversity. Differences were detected in species composition with latitude (averaged across depth groups) but not for depth (averaged across latitudinal groups). Richness varied locally and showed a variety of patterns depending on the areas and depths considered. The greatest diversity of molluscs was found in the fine fraction (i.e., <4.1 mm) where a considerable number of species corresponded to new species or new regional records. Rarity was high with up to ~41% of species represented by single individuals and ~63% occurring at one station only. Fine-mesh trawling appears to be of fundamental importance in accelerating the census of the fine fraction, which is the one containing the highest diversity, and is recommended for future sampling in Antarctica and in polar areas in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albano PG, Sabelli B, Bouchet P (2011) The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment. Biodivers Conserv 20:3223–3237

    Article  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:1. doi:10.1186/1471-2105-15-293

    Article  Google Scholar 

  • Barry JP, Grebmeier JM, Smith J, Dunbar RB (2003) Oceanographic Versus Seafloor-Habitat Control of Benthic Megafaunal Communities in the SW Ross Sea, Antarctica. In: Ditullio GR, Dunbar RB (eds.) Biogeochemistry of the Ross Sea. American Geophysical Union, Washington, pp 327–353

    Chapter  Google Scholar 

  • Błażewicz-Paszkowycz M, Siciński J (2014) Diversity and distribution of Tanaidacea (Crustacea) along the Victoria Land Transect (Ross Sea, Southern Ocean). Polar Biol 37:519–529. doi:10.1007/s00300-014-1452-7

    Article  Google Scholar 

  • Bouchet P, Lozouet P, Maestrati P, Heros V (2002) Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol J Linn Soc 75:421–436. doi:10.1046/j.1095-8312.2002.00052.x

    Article  Google Scholar 

  • Bowden DA, Schiaparelli S, Clark MR, Rickard GJ (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Res Part II 58:119–127. doi:10.1016/j.dsr2.2010.09.006

    Article  Google Scholar 

  • Bracegirdle T, Stephenson D (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim Dynam 38:2805–2821. doi:10.1007/s00382-012-1330-3

    Google Scholar 

  • Brandt A (1995) Peracarid fauna (Crustacea, Malacostraca) of the Northeast Water Polynya off Greenland: documenting close benthic-pelagic coupling in the Westwind Trough. Mar Ecol-Prog Ser 121:39–51. doi:10.3354/meps121039

    Article  Google Scholar 

  • Brandt A, De Broyer C, Gooday AJ, Hilbig B, Thomson MR (2004) Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) a tribute to Howard Sanders. Deep-Sea Res Part II 51:1457–1465. doi:10.1016/j.dsr2.2004.08.006

    Article  Google Scholar 

  • Brandt A et al (2013) Epifauna of the Sea of Japan collected via a new epibenthic sledge equipped with camera and environmental sensor systems. Deep-Sea Res Part II 86:43–55. doi:10.1016/j.dsr2.2012.07.039

    Article  Google Scholar 

  • Brandt A et al (2014) Composition and abundance of epibenthic-sledge catches in the South Polar Front of the Atlantic. Deep-Sea Res Part II 108:69–75. doi:10.1016/j.dsr2.2014.08.017

    Article  Google Scholar 

  • Brandt A, Elsner NO, Malyutina MV, Brenke N, Golovan OA, Lavrenteva AV, Riehl T (2015) Abyssal macrofauna of the Kuril–Kamchatka Trench area (Northwest Pacific) collected by means of a camera–epibenthic sledge. Deep-Sea Res Part II 111:175–187. doi:10.1016/j.dsr2.2014.11.002

    Article  Google Scholar 

  • Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39:10–21. doi:10.4031/002533205787444015

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi:10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma K, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monograph 84:45–67. doi:10.1890/13-0133.1

    Article  Google Scholar 

  • Chao A, Ma KH, Hsieh TC (2016) iNEXT (iNterpolation and EXTrapolation) Online. http://chao.stat.nthu.edu.tw/wordpress/software_download/. Accessed 20 March 2017

  • Clark MR, Stewart R (2016) The NIWA seamount sled: An effective epibenthic sledge for sampling epifauna on seamount and rough seafloor. Deep-Sea Res Part II 108:32–38

    Article  Google Scholar 

  • Clarke KR (1993) Non parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2005) PRIMER. Getting started with v6 PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr. Mar Biol 41:47–114

    Google Scholar 

  • Clarke A, Griffiths HJ, Linse K, Barnes DK, Crame JA (2007) How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers Distrib 13:620–632. doi:10.1111/j.1472-4642.2007.00380.x

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044

    Article  Google Scholar 

  • Cummings V, Thrush S, Chiantore M, Hewitt J, Cattaneo-Vietti R (2010) Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude. Antarct Sci 22:793–804. doi:10.1017/S0954102010000489

    Article  Google Scholar 

  • Dell RK (1990) Antarctic Mollusca. With special reference to the fauna of the Ross Sea. J R Soc N Z Bull 27:1–311

    Google Scholar 

  • Eléaume M, Hemery LG, Bowden DA, Roux M (2011) A large new species of the genus Ptilocrinus (Echinodermata, Crinoidea, Hyocrinidae) from Antarctic seamounts. Polar Biol 34:1385–1397. doi:10.1007/s00300-011-0993-2

    Article  Google Scholar 

  • Gaston KJ, Williams PH (1993) Mapping the world’s species-the higher taxon approach. Biodivers Lett. doi:10.2307/2999642

    Google Scholar 

  • Ghiglione C, Alvaro MC, Griffiths H, Linse K, Schiaparelli S (2013) Ross Sea Mollusca from the latitudinal gradient program: R/V Italica 2004 Rauschert dredge samples. ZooKeys 341:37–48. doi:10.3897/zookeys.341.6031

    Article  Google Scholar 

  • Griffiths HJ, Linse K, Crame JA (2003) SOMBASE–Southern Ocean Mollusc Database: a tool for biogeographic analysis in diversity and ecology. Org Divers Evol 3:207–213. doi:10.1078/1439-6092-00079

    Article  Google Scholar 

  • Griffiths HJ, Danis B, Clarke A (2011) Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep-Sea Res Part II 58:18–29. doi:10.1016/j.dsr2.2010.10.008

    Article  Google Scholar 

  • Hanchet S, Mitchell J, Bowden D, Clark M, Hall J, O’Driscoll R (2008) Ocean survey 20/20 NZ IPY-CAML: final voyage report. NIWA Client Report WLG2008-74

  • Hessler R, Sanders ML (1967) Faunal diversity in the deep sea. Deep-Sea Res Oceanogr Abstr 14:65–78. doi:10.1016/0011-7471(67)90029-0

    Article  Google Scholar 

  • Hilbig B (2004) Polychaetes of the deep Weddell and Scotia Seas – composition and zoogeographical links. Deep-Sea Res Part II 51:1817–1825

    Article  Google Scholar 

  • IPCC (2013) Climate change: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge

    Google Scholar 

  • Jörger K, Schrödl M, Schwabe E, Würzberg L (2014) A glimpse into the deep of the Antarctic Polar Front–Diversity and abundance of abyssal molluscs. Deep-Sea Res Part II 108:93–100. doi:10.1016/j.dsr2.2014.08.003

    Article  Google Scholar 

  • Kaiser S, Barnes DKA, Linse K, Brandt A (2008) Epibenthic macrofauna associated with the shelf and slope of a young and isolated Southern Ocean Island. Antarct Sci 20:281–290

    Article  Google Scholar 

  • Kaiser S, Barnes DKA, Sands CJ, Brandt A (2009) Biodiversity of an unknown Antarctic Sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf. Mar Biodiv 39:27–43

    Article  Google Scholar 

  • Kennicutt M et al (2015) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci 27:3–18. doi:10.1017/S0954102014000674

    Article  Google Scholar 

  • Linse K (2004) Scotia Arc deep-water bivalves: composition, distribution and relationship to the Antarctic shelf fauna. Deep-Sea Res Part II 51:1827–1837

    Article  Google Scholar 

  • Linse K, Brandt A (1998) Distribution of Epibenthic Molluscs on a Transect Through the Beagle Channel (Southern Chile). J Mar Bio Assoc UK 78:875–889

    Article  Google Scholar 

  • Longino JT, Coddington J, Colwell RK (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology 83:689–702. doi:10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2

    Article  Google Scholar 

  • Lörz A-N, Kaiser S, Bowden D (2013) Macrofaunal crustaceans in the benthic boundary layer from the shelf break to abyssal depths in the Ross Sea (Antarctica). Polar Biol 36:445–451. doi:10.1007/s00300-012-1269-1

    Article  Google Scholar 

  • McClain CR (2004) Connecting species richness, abundance and body size in deep-sea gastropods. Glob Ecol Biogeogr 13:327–334. doi:10.1111/j.1466-822X.2004.00106.x

    Article  Google Scholar 

  • Mitchell J, Clark M (2004) Voyage Report Tan04–02. Western Ross Sea Voyage, pp 1–102

  • Pabis K, Jóźwiak P, Lörz A-N, Schnabel K, Błażewicz-Paszkowycz M (2015) First insights into the deep-sea tanaidacean fauna of the Ross Sea: species richness and composition across the shelf break, slope and abyss. Polar Biol 38:1429–1437. doi:10.1007/s00300-015-1706-z

    Article  Google Scholar 

  • Piazza P, Błażewicz-Paszkowycz M, Ghiglione C, Alvaro MC, Schnabel K, Schiaparelli S (2014) Distributional records of Ross Sea (Antarctica) Tanaidacea from museum samples stored in the collections of the Italian National Antarctic Museum (MNA) and the New Zealand National Institute of Water and Atmospheric Research (NIWA). ZooKeys 451:49–60. doi:10.3897/zookeys.451.8373

    Article  Google Scholar 

  • Piazza P, Alvaro MC, Bowden DA, Clark MR, Conci N, Ghiglione C, Schiaparelli S (2015) First record of living Acesta (Mollusca: Bivalvia) from an Antarctic seamount. Mar Biodiv 46:529–530. doi:10.1007/s12526-015-0397-6

    Article  Google Scholar 

  • Rehm P, Thatje S, Mühlenhardt-Siegel U, Brandt A (2007) Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea. Polar Biol 30:871–881. doi:10.1007/s00300-006-0247-x

    Article  Google Scholar 

  • Scambos T, Haran T, Fahnestock M, Painter T, Bohlander J (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens Environ 111:242–257. doi:10.1016/j.rse.2006.12.020

    Article  Google Scholar 

  • Schiaparelli S, Lörz A-N, Cattaneo-Vietti R (2006) Diversity and distribution of mollusc assemblages on the Victoria Land coast and the Balleny Islands, Ross Sea, Antarctica. Antarct Sci 18:615–631. doi:10.1017/S0954102006000654

    Article  Google Scholar 

  • Schiaparelli S, Danis B, Wadley V, Stoddart DM (2013) The census of Antarctic marine life: the first available baseline for Antarctic marine biodiversity. In: Verde C, di Prisco G (eds.) Adaptation and evolution in marine environments, Vol 2. Springer, Berlin Heidelberg, pp 3–19

    Chapter  Google Scholar 

  • Schiaparelli S, Ghiglione C, Alvaro MC, Griffiths HJ, Linse K (2014) Diversity, abundance and composition in macrofaunal molluscs from the Ross Sea (Antarctica): results of fine-mesh sampling along a latitudinal gradient. Polar Biol 37:859–877. doi:10.1007/s00300-014-1487-9

    Article  Google Scholar 

  • Schwabe E, Bohn JM, Engl W, Linse K, Schrödl M (2007) Rich and rare - First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca). Deep-Sea Res Part II 54:1831–1847. doi:10.1016/j.dsr2.2007.07.010

    Article  Google Scholar 

  • Souza JLP, Baccaro FB, Landeiro VL, Franklin E, Magnusson WE, Pequeno PACL, Fernandes IO (2016) Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Divers Distrib 22:111–122

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the crew of the Tangaroa ‘IPY-CAML TAN0802’ for logistic support. We are indebted to the New Zealand Ministry of Fisheries (MFish) and NIWA (Wellington) for the financial support of the cruise and related study activities. We are indebted to Laura D’Annibale for sorting operations at the Italian National Antarctic Museum (Section of Genoa). We thank the Italian PNRA for the financial support to the research program BAMBi (Barcoding of Antarctic Marine Biodiversity, PNRA 2010/A1.10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Schiaparelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 KB)

Maps of gear deployments during the TAN0802 voyage. (TIF 42177 KB)

300_2017_2117_MOESM3_ESM.tif

Numbers of species and specimens collected by each gear divided per mollusc class. Abbreviations: BIV = Bivalvia; GAS = Gastropoda; MON = Monoplacophora; POL = Polyplacophora; SCA = Scaphopoda; SOL = Solenogastres (TIF 32543 KB)

Supplementary material 4 (PDF 118 KB)

300_2017_2117_MOESM5_ESM.jpg

Richness rarefaction and extrapolation analyses performed with iNEXT on incidence data (Brenke sled data only) for the bathymetric classes considered (JPG 1102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiglione, C., Alvaro, M.C., Piazza, P. et al. Mollusc species richness and abundance from shelf to abyssal depths in the Ross Sea (Antarctica): the importance of fine-mesh-towed gears and implications for future sampling. Polar Biol 40, 1989–2000 (2017). https://doi.org/10.1007/s00300-017-2117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2117-0

Keywords

Navigation