Skip to main content

Advertisement

Log in

A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biological soil crusts have been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Arctic soil crusts have received some attention, but they are far less studied than their temperate counterparts. While the tundra zone of Arctic regions has an abundant cover of lichens, mosses and low-growing vascular plants, the High Arctic semi-arid and arid deserts have a much reduced but still very significant cover of biological soil crust dominated by microalgae. This review discusses what is known about Arctic soil crusts with the intention of stimulating study of this sensitive ecosystem. Arctic soil crusts are considered to be one of the most extreme habitat types on earth. Low temperatures and lack of water associated with a wide spectrum of disturbances have a dramatic effect on chemical and physical soil ecological properties (salinity, pH, conductivity and gas content). Microalgae are the keystone microbial species in polar crusts, being significant primary producers, fixing atmospheric nitrogen and secreting polysaccharides that bind soil aggregates together, thereby reducing erosion and water runoff. The biological diversity of soil crust microalgae in the Arctic is high. Soil crusts of the Arctic semi-arid and arid deserts provide a special opportunity to study the environmental factors controlling the diversity, distribution and abundance of the microalgae in the absence of anthropogenic disturbance. However, anthropogenic disturbances and climate change are occurring in the Arctic, and even more transformations are expected in the near future. Therefore, the ecological study of Arctic ecosystems, including biological soil crusts, is a matter of urgency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abed RMM, Al-Sadi AM, Al-Shehi M, Al-Hinai S, Robinson MD (2012) Diversity of free-living and lichenized fungal communities in biological soil crusts of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705

    Article  Google Scholar 

  • Afonina OM, Matveyeva NV (2003) Mosses of the Bolshevik Island (Severnaya zemlya Archipilago). Bot J 88(9):1 (in Russian)

    Google Scholar 

  • Andreyeva VM (2009) Nonmotile unicellular and colonial green algae (chlorophyta) in soils of polar deserts. Novit Syst Plant Non Vasc 43:7–15 (in Russian)

    Google Scholar 

  • Bastida F, Jehmlich N, Ondono S, Bergen M, Garcia C, Moreno JL (2014) Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil. Soil Biol Biochem 76:70–79

    Article  CAS  Google Scholar 

  • Belnap J (2008) Biological Crusts. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, New York, pp 1–4

    Google Scholar 

  • Belnap J, Lange OL (2001) Biological soil crusts: structure, function and management. Springer, Berlin

    Google Scholar 

  • Belnap J, Rosentreter R, Kaltenecker J, Williams J, Leonard S, Luehring P, Eldridge D (2001) Biological soil crust: ecology and management. Ecology and management of microbiotic soil crusts. Technical reference, Denver

  • Bjerke JW (2011) Winter climate change: ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environ Exp Bot 72:404–408

    Article  Google Scholar 

  • Bliss LC, Svoboda J, Bliss DI (1984) Polar deserts and their plant cover and plant production in the Canadian High Arctic. Holarct Ecol 7:304–324

    Google Scholar 

  • Breen K, Lèvesque E (2006) Proglacial succession of biological soil crusts and vascular plants: biotic interactions in the High Arctic. Can J Bot 84(11):1714–1731

    Article  Google Scholar 

  • Breen K, Lèvesque E (2008) The influence of biological soil crusts on soil characteristics along a High Arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40(2):287–297

    Article  Google Scholar 

  • Büdel B, Colesie C (2014) Biological soil crusts. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soil habitats. Springer, Heidelberg, pp 131–161

    Chapter  Google Scholar 

  • Burja AM, Abu-Mansour E, Banaigs B, Pyari C, Burgess JG, Wright PC (2002) Culture of marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Methods 48:207–219

    Article  CAS  PubMed  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 591–611

    Google Scholar 

  • Chae N, Kang H, Kim Y, Hong SG, Lee BY, Choi T (2016) CO2 efflux from the biological soil crusts of the High Arctic in a later stage of primary succession after deglaciation, Ny-Ålesund, Svalbard, Norway. Appl Soil Ecol 98:92–102

    Article  Google Scholar 

  • Chen Y-H, Miller JR, Francis JA, Russel GL, Aires F (2003) Observed and modeled relationships among Arctic climate variables. J Geophys Res 108:D24

    Google Scholar 

  • Colacevich A, Caruso T, Borghini F, Bargagli R (2009) Photosynthetic pigments in soils from northern Victoria Land (continental Antarctica) as proxies for soil algal community structure and function. Soil Biol Biochem 41:2105–2114

    Article  CAS  Google Scholar 

  • Colesie C, Green ATG, Haferkamp I, Büdel B (2014a) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8(10):2104–2115

  • Colesie C, Gommeaux M, Green ATG, Budel B (2014b) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26(2):115–123

    Article  Google Scholar 

  • Darby B, Neher D, Belnap J (2010) Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–431

    Article  CAS  Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities of polar environment. In: Beyer L, Boelter M (eds) GeoEcology of terrestrial oases ecological studies. Springer, Berlin, pp 303–319

    Google Scholar 

  • Elster J, Benson E (2004) Chapter 3. Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In: Fuller JB, Lane N, Benson EE (eds) Life in a frozen state Libro. CRC Press, Boca Raton, pp 111–150

    Chapter  Google Scholar 

  • Elster J, Lukešová A, Svoboda J, Kopecký J, Kanda H (1999) Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec 35(194):231–254

    Article  Google Scholar 

  • Fischer T, Subbotina M (2014) Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis. Biologia 69(11):1520–1530

    Article  Google Scholar 

  • Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Nat 68(4):405–436

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72

    Article  PubMed  Google Scholar 

  • George AL, Murray AW, Montiel PO (2001) Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation. FEMS Microbiol Ecol 37:91–101

    Article  CAS  Google Scholar 

  • Green TGA, Broady PA (2001) Biological soil crusts of Antarctica. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Heidelberg, pp 133–139

    Chapter  Google Scholar 

  • Hartley AE, Schlesinger WH (2002) Potential environmental controls on nitrogenase activity in biological crusts of northern Chihuahuan Desert. J Arid Environ 52:293–304

    Article  Google Scholar 

  • Hastings KL, Smith LE, Lindsey ML, Blotsky LC, Downing GR, Zellars DQ, Downing JK, Corena-McLeod M (2014) Effect of microalgae application on soil algal species diversity, cation exchange capacity and organic matter after herbicide treatments [version 1; referees: 1 approved, 1 not approved]. F1000Research 3:281

  • Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol 12:587–594

    Article  Google Scholar 

  • Hodač L, Hallmann C, Spitzer K, Elster J, Fashauer F, Brinkmann N, Lepka D, Diwan V, Friedl T (in press) Phylogenetic analysis of polar Chlorella and Stichococcus suggests biogeography of airborne microalgae. FEMS Microbiol Ecol

  • Hu C, Gao K, Whitton BA (2012) Semi-arid regions and deserts. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Berlin, pp 345–369

    Chapter  Google Scholar 

  • Huang L, Zhang Z, Li X (2014) Carbon fixation and influencing factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. J Arid Land 6(6):725–734

    Article  CAS  Google Scholar 

  • Inoue T, Kudoh S, Inoue M, Uchida M, Kanda H (2011) Three lecideoid lichens new to Svalbard, Norway. Polar Sci 4(4):588–592

    Article  Google Scholar 

  • Inoue T, Kudoh S, Uchida M, Tanabe Y, Inoue M, Kanda H (2014) Effects of substrate differences on water availability for Arctic lichens during the snow-free summers in the High Arctic glacier foreland. Polar Sci 8:397–412

    Article  Google Scholar 

  • Jia RL, Li XR, Liu LC, Gao YH, Zhang XT (2012) Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. Soil Biol Biochem 45:31–39

    Article  CAS  Google Scholar 

  • Johansen JR, Ashley J, Rayburn WR (1993) The effects of rangefire on soil algal crusts in semiarid shrub-steppe of the Lower Columbia Basin and their subsequent recovery. Great Basin Nat 53:73–88

    Google Scholar 

  • Jones A, Stolbovoy V, Tarnocai C, Broll G, Spaargaren O, Montanarella L (eds) (2009) Soil atlas of the Northern Circumpolar Region. European Commission, Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial Assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50(3):396–407

    Article  PubMed  Google Scholar 

  • Kaštovská K, Stibal M, Šabacká M, Černá B, Šantrůčková H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287

    Article  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    Article  CAS  Google Scholar 

  • Kirst GO, Wiencke Ch (1995) Ecophysiology of polar algae. J Phycol 51:181–199

    Article  Google Scholar 

  • Knelman JE, Legg TM, O’Neill SP, Washenberger CL, Gonzalez A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    Article  CAS  Google Scholar 

  • Kvíderová J, Elster J, Šimek M (2011) In situ response of Nostoc commune s.l. colonies to desiccation, in Central Svalbard, Norwegian High Arctic. Fottea 11(1):87–97

    Article  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2012) Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts. Plant Soil 351:325–336

    Article  CAS  Google Scholar 

  • Lange OL (2001) Photosynthesis of soil crust-biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Ecological studies, vol 150. Springer, Berlin, pp 217–240

    Chapter  Google Scholar 

  • Langhans T, Storm C, Schwabe A (2009) Biological soil crusts and their microenvironment: impact on emergence, survival and establishment of seedlings. Flora 204(2):157–168

    Article  Google Scholar 

  • Láska K, Barták M, Hájek J, Prošek P, Bohuslavová O (2011) Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports 1:49–62

    Article  Google Scholar 

  • Láska K, Witoszova D, Prošek P (2012) Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Pol Polar Res 33(4):297–318

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70(10):5963–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal GD (2000) Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T. Canada. Arct Antarct Alp Res 32:40–45

    Article  Google Scholar 

  • Lichner L, Hallett PD, Drongová Z, Czachor H, Kováčik L, Mataix-Solera J, Homolák M (2013) Algae influence the hydrophysical parameters of a sandy soil. Catena 108:58–68

    Article  Google Scholar 

  • Liengen T (1999) Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can J Microbiol 45:573–581

    Article  CAS  Google Scholar 

  • Maqubela MP, Mnkeni PNS, Issa OM, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Matveeva NV (1979) Vegetation structure of polar desert in Taimyr Peninsula (Cape Chelyuskin). In: Aleksandrova VD, Matveeva NV (eds) Arctic tundra and polar desert of Taimyr. Nauka, Leningrad, pp 5–27 (in Russian)

    Google Scholar 

  • Moquin SA, Garcia JR, Brantley SL, Takacs-Vesbach CD, Shepherd UL (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117

    Article  Google Scholar 

  • Norris TB, Castenholz RW (2006) Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol 57:470–483

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Santos K, Pietrasiak N, Bohunicka M, Miscoe LH, Kovacik L, Martin MP, Johansen JR (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol 49(4):450–470

    Article  Google Scholar 

  • Patova EN, Beljakova RN (2006) Terrestrial cyanoprokaryota of Bolshevik island (Severnaya zemlya Archipilago). Novit Syst Plant Non Vasc 40:83–91 (in Russian)

    Google Scholar 

  • Patzelt DJ, Hodac L, Friedl T, Pietrasiak N, Johansen J (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama desert, Chile. J Phycol 50:698–710

    Article  CAS  PubMed  Google Scholar 

  • Pichrtová M, Hájek T, Elster J (2014) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol 89(2):270–280

    Article  PubMed  Google Scholar 

  • Pichrtová M, Hájek T, Elster J (in press) Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol

  • Pointing SB, Büdel B, Convey P, Gillman LN, Körner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Prach K, Klimešová J, Košnar J, Redcenko O, Hais M (2012) Variability of contemporary vegetation around Petuniabukta, central Spitsbergen. Pol Polar Res 33(4):383–394

    Google Scholar 

  • Pushkareva E, Elster J (2013) Biodiversity and ecological typification of cryptogamic soil crust in the vicinity of Petunia Bay, Svalbard. Czech Polar Rep 3(1):7–18

    Article  Google Scholar 

  • Pushkareva E, Pessi IS, Wilmotte A, Elster J (2015) Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 91:fiv143

    Article  PubMed  PubMed Central  Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol Ecol 28:315–323

    Article  CAS  Google Scholar 

  • Řeháková K, Chlumska Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62:337–346

    Article  PubMed  Google Scholar 

  • Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, Lopez-Bautista JM (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol 58:218–231

    Article  PubMed  Google Scholar 

  • Rybalka N, Andersen NA, Kostikov I, Mohr KI, Massalski A, Olech M, Friedl T (2009) Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stamenopiles, Xanthophyceae). Environ Microbiol 11(3):554–565

    Article  CAS  PubMed  Google Scholar 

  • Ryšánek D, Elster J, Kováčik L, Škaloud P (in press) Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Micrologiol Ecol

  • Šabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol 30(1):31–37

    Article  Google Scholar 

  • Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc Biol Sci 278:702–708

    Article  CAS  PubMed  Google Scholar 

  • Schutte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 19(1):54–66

    Article  PubMed  Google Scholar 

  • Shi Y, Grogan P, Sun H, Xiong J, Yang Y, Zhou J, Chu H (2015) Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biol Biochem 86:126–134

    Article  CAS  Google Scholar 

  • Solheim B, Zielke M, Bjerke JW, Rozema J (2006) Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems. Plant Ecol 182:109–118

    Google Scholar 

  • Steven B, Lionard M, Kuske CR, Vincent WF (2013) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high Arctic Polar Desert. PLoS ONE 8(8):e71489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart KJ, Coxson D, Siciliano SD (2011a) Small-scale spatial patterns in N2-fixation and nutrient availability in an arctic hummock–hollow ecosystem. Soil Biol Biochem 43:133–140

    Article  CAS  Google Scholar 

  • Stewart KJ, Lamb EG, Coxson DS, Siciliano SD (2011b) Bryophyte-cyanobacterial associations as key factor in N2-fixation across the Canadian Arctic. Plant Soil 344(1–2):335–346

    Article  CAS  Google Scholar 

  • Stewart KJ, Brummell ME, Coxson DS, Siciliano SD (2012) How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? Plant Soil. doi:10.1007/s11104-012-1282-8

    Google Scholar 

  • Stewart KJ, Grogan P, Coxson DS, Siciliano SD (2014) Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biol Biochem 70:96–112

    Article  CAS  Google Scholar 

  • Stradling DA, Thygerson T, Walker JA, Smith BN, Hansen LD, Criddle RS, Pendleton RL (2002) Cryptogamic crust metabolism in response to temperature, water vapor, and liquid water. Thermochim Acta 394:219–225

    Article  CAS  Google Scholar 

  • Strunecký O, Elster J, Komárek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 33:1419–1428

    Article  Google Scholar 

  • Strunecký O, Elster J, Komárek J (2012) Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiol Ecol 82:482–490

    Article  PubMed  Google Scholar 

  • Sun WQ, Leopold AC (1994) Glassy state and seed storage stability: a viability equation analysis. Ann Bot 74:601–604

    Article  Google Scholar 

  • Tashyreva D, Elster J (2012) Production of dormant stages and stress resistance of polar cyanobacteria. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on Earth and other planetary bodies. Springer, Dordrecht, pp 367–386

    Chapter  Google Scholar 

  • Tashyreva D, Elster J (2015) Effect of nitrogen starvation on tolerance of Arctic Microcoleus strains (Cyanobacteria) to complete and incomplete desiccation. Front Microbiol 6(278):1–11

    Google Scholar 

  • Tashyreva D, Elster J (2016) Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb Ecol. doi:10.1007/s00248-016-0732-x

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Williams WJ, Eldridge DJ (2011) Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland. Appl Soil Ecol 49:26–31

    Article  Google Scholar 

  • Xiao B, Zhao Y-G, Shao M-A (2010) Characteristics and numeric simulation of soil evaporation in biological soil crusts. J Arid Environ 74:121–130

    Article  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Eviron Microbiol 70(2):973–983

    Article  CAS  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Nakatsubo T (2007) Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard. Polar Res 26:22–30

    Article  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Kanda H, Nakatsubo T (2010) Production of biological soil crust in the early stage of primary succession on a High Arctic glacier foreland. New Phytol 186:451–460

    Article  PubMed  Google Scholar 

  • Yoshitake S, Uchida M, Ohtsuka T, Kanda H, Koizumi H, Nakatsubo T (2014) Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Alesund, Svalbard. Polar Sci 5:391–397

    Article  Google Scholar 

  • Zhurbenko MP, Matveyeva NV (2006) Terricolous lichens of the Bolshevik island (Severnaya zemlya Archipilago). Botany Journal 91(10):1457–1484 (in Russian)

    Google Scholar 

  • Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high Arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–378

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Kamil Láska, PhD (Masaryk University, Brno), and Jan Kavan, MSc (University of South Bohemia, České Budějovice), for measuring of soil microclimatic parameters. Our study was supported by grants from the Ministry of Education, Youth and Sport of the Czech Republic (LM2010009 CzechPolar, CZ.1.07/2.2.00/28.0190 and RVO67985939). Special appreciation is given to reviewer Prof. P. Broady, who helped immensely to increase the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Elster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkareva, E., Johansen, J.R. & Elster, J. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol 39, 2227–2240 (2016). https://doi.org/10.1007/s00300-016-1902-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1902-5

Keywords

Navigation