Skip to main content
Log in

Ecophysiology of picophytoplankton in different water masses of the northern Bering Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Picophytoplankton are important primary producers in oligotrophic waters and sensitive to environmental changes. However, little is known about their ecophysiology in the northern Bering Sea with complex water masses. The distribution of picophytoplankton with their optical physiological features and physicochemical characteristics as well as water masses were investigated on the northern Bering Sea Shelf during the summer of 2008. Flow cytometry and statistical analysis including Pearson correlation analysis and cluster analysis were the main methods used. Synechococcus and picoeukaryotes were the primary existing picophytoplankton assemblages, with their respective abundances ranging from 0 to 2.69 × 106 and 0.47 × 106 to 13.20 × 106 cells l−1 and peaking at water depths of 10–30 m with surface light levels of 30–50 %. Larger Synechococcus cells contained larger amounts of chlorophyll a (Chl a) and phycoerythrin. Low temperature, high nutrient concentrations and a high N/P value (>7) might limit cell abundance of picoeukaryotes, as shown by their close relationships. With an increase of temperature and oligotrophic freshwater input, smaller picophytoplankton would thrive and the cellular Chl a (Chl a/cell) increase with higher contribution to total Chl a. Seven water types with different physicochemical and biological characteristics were differentiated using the mini-ecosystem (a descriptor of a composite of parameters defining a composite water type community, including temperature, salinity, macronutrients and community abundance of picophytoplankton) as an indicator. They are Alaska Coastal Water, Bering Shelf Surface Water, 20–40 m of Bering Shelf Water, Bering Shelf Cold Water, Anadyr Water, Anadyr-Bering Shelf Water (Bering Sea Water) and Cold Pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agawin NSR, Duarte CM, Agust S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    Article  CAS  Google Scholar 

  • Alvin Y, Jie X, Yin K (2008) Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement. Mar Pollut Bull 57:313–324

    Article  Google Scholar 

  • Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    Article  CAS  Google Scholar 

  • Chen B, Wang L, Song S, Huang B, Sun J, Liu H (2011) Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res 31:1527–1540

    Article  Google Scholar 

  • Dubelaar GBI, Jonker RR (2000) Flow cytometry as a tool for the study of phytoplankton. Sci Mar 64:135–156

    Article  Google Scholar 

  • Falkowski PG (2000) Rationalizing elemental ratios in unicelllular algae. J Phycol 36:3–6

    Article  CAS  Google Scholar 

  • Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819

    Article  CAS  PubMed  Google Scholar 

  • Finkel ZV, Katz ME, Wright JD, Schofield OME, Falkowski PG (2007) Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc Natl Acad Sci USA 102:8927–8932

    Article  Google Scholar 

  • Forster J, Hirst AG, Esteban GF (2013) Achieving temperature-size changes in a unicellular organism. ISME J 7:28–36

    Article  CAS  PubMed  Google Scholar 

  • Frey KE, Maslanik JA, Clement Kinney J, Maslowski W (2014) Chapter 3: recent variability in sea ice cover, age, and thickness in the Pacific Arctic region. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 31–64

    Google Scholar 

  • Gao S, Chen J, Li H, Liu Z, Lu Y, Zhang H (2011) The distribution and structural conditions of nutrients in the Bering Sea in the summer of 2008. Acta Oceanol Sin 33:157–165 (in Chinese)

    Google Scholar 

  • Gradinger R, Lenz J (1989) Picocyanobacteria in the high Arctic. Mar Ecol Prog Ser 52:99–101

    Article  Google Scholar 

  • Grebmeier JM, Barry JP (2007) Benthic processes in polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas: Windows to the World, Elsevier Oceanography Series. Elsevier, Amsterdam, pp 363–390

    Chapter  Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006a) Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Article  Google Scholar 

  • Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JE, McLaughlin FA, McNutt SL (2006b) A Major ecosystem shift observed in the northern Bering Sea. Science 311:1461–1464

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AK, Lovejoy C, Galand PE (2008) Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system. Limnol Oceanogr 53:922–935

    Article  Google Scholar 

  • He J, Zhang F, Lin L, Ma Y, Cai M, Chen J (2012) Bacterioplankton and picophytoplankton abundance, biomass, and distribution in the Western Canada Basin during summer 2008. Deep-Sea Res II 81–84:36–45

    Article  Google Scholar 

  • Hessen DO, Ventura M, Elser JJ (2008) Do phosphorus requirements for RNA limit genome size in crustacean zooplankton? Genome 51:685–691

    Article  CAS  PubMed  Google Scholar 

  • Hessen DO, Jeyasingh PD, Neiman M, Weider LJ (2010) Genome streamlining and the elemental costs of growth. Trends Ecol Evol 25:75–80

    Article  PubMed  Google Scholar 

  • Hessen DO, Leinaas DM, Leinas HP (2013) Temperature-size relations from the cellular-genomic perspective. Biol Rev 88:476–488

    Article  PubMed  Google Scholar 

  • Hoffmann LJ, Peeken I, Lochte K (2006) Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol Oceanogr 51:1217–1229

    Article  CAS  Google Scholar 

  • Hunt GL, Allen Jr BM, Angliss RP, Baker T, Bond N, Buck G, Byrd GV, Coyle KO, Devol A, Eggers DM, Eisner L, Feely R, Fitzgerald S, Fritz LW, Gritsay EV, Ladd C, Lewis W, Mathis J, Mordy CW, Mueter F, Napp J, Sherr E, Shull D, Stabeno P, Stepanenko MA, Strom S, Whitledge TE (2010) Status and trends of the Bering Sea region, 2003–2008. In: McKinnell SM, Dagg MJ (eds) PICES Special Publication 4. North Pacific Marine Science Organization, Sidney BC, pp 196–267

  • Hyoung MJ, Lee SH, Seung WJ, Dahms H-U, Lee JH (2012) Latitudinal variation of phytoplankton communities in thewestern Arctic Ocean. Deep Sea Res II 81–84:3–17

    Google Scholar 

  • Kilias E, Kattner G, Wolf C, Frickenhaus S, Metfie K (2014) A molecular survey of protist diversity through the central Arctic Ocean. Polar Biol 37:1271–1287

    Article  Google Scholar 

  • Lancelot C, Keller MD, RousseauV Smith WO, Mathot S (1998) Autecology of the marine haptophyte Phaeocystis sp. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 209–224

    Google Scholar 

  • Li WKW, Subba Rao DV, Harrison WG (1983) Autotrophic picoplankton in the tropical Ocean. Science 219:292–295

    Article  CAS  PubMed  Google Scholar 

  • Li H, Veldhuis MJW, Post AF (1998) Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar Ecol Prog Ser 73:107–115

    Article  Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Imai K, Suzuki K, Nojiri Y, Tsurushima N, Saino T (2002a) Seasonal variability of picophytoplankton and bacteria in the western subarctic Pacific Ocean at station KNOT. Deep Sea Res II 49:5409–5420

    Article  CAS  Google Scholar 

  • Liu H, Suzuki K, Minami C (2002b) Picoplankton community structure in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Mar Ecol Prog Ser 237:1–14

    Article  Google Scholar 

  • Liu Z, Chen J, Liu YL, Gao S, Li H, Zhang H (2011) The size-fractionated chlorophyll a concentration and primary productivity in the Bering Sea in the summer of 2008. Acta Oceanol Sin 33:148–157 (in Chinese)

    CAS  Google Scholar 

  • Loladze I, Elser J (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14:244–250

    Article  PubMed  Google Scholar 

  • Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau M-J, Terrado R, Potvin M, Massana R, Pedrós-Alió C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic Seas. J Phycol 43:78–89

    Article  CAS  Google Scholar 

  • Morá XAG, López-Urrutia A, Calvo-Díaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer Ocean. Glob Change Biol 16:1137–1144

    Article  Google Scholar 

  • Mostajir B, Gosselin M, Gratton Y (2001) Surface water distribution of pico- and nanophytoplankton in relation to two distinctive water masses in the North Water, northern Baffin Bay, during fall. Aquat Microb Ecol 23:205–212

    Article  Google Scholar 

  • Netto AT, Campostrini E, Gonçalves de Oliveira J (2005) Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic 104:199–209

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Sato M, Furuya K (2010) Pico- and nanophytoplankton dynamics during the decline phase of the spring bloom in the Oyashio region. Deep Sea Res II 57:1643–1652

    Article  Google Scholar 

  • Scarratt MG, Marchetti A, Hale MS, Rivkin RB, Michaud S, Matthews P, Levasseur M, Sherry N, Merzouk A, Li WKW, Kiyosawa H (2006) Assessing microbial responses to iron enrichment in the Subarctic Northeast Pacific: do microcosms reproduce the in situ condition? Deep Sea Res II 53:2182–2200

    Article  Google Scholar 

  • Schloss IR, Nozais C, Mas S (2008) Picophytoplankton and nanophytoplankton abundance and distribution in the southeastern Beaufort Sea (Mackenzie Shelf and Amundsen Gulf) during Fall 2002. J Mar Syst 74:978–993

    Article  Google Scholar 

  • Stabeno P, Napp J, Mordy C, Whitledge T (2010) Factors influencing physical structure and lower trophic levels of the eastern Bering Sea shelf in 2005: Sea ice, tides and winds. Prog Oceanogr 85:180–196

    Article  Google Scholar 

  • Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Glob Biogeochem Cycles 24:GB3016. doi:10.1029/2009GB003680

    Article  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (<mm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis MJW, Timmermans KR, Croot PW (2005) Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J Sea Res 53:7–24

    Article  CAS  Google Scholar 

  • Vincent WF, Gibson JAE, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141

    Article  CAS  PubMed  Google Scholar 

  • Waleron M, Waleron K, Vincent WF (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365

    Article  CAS  PubMed  Google Scholar 

  • Woodgate RA, Aagaard K, Weingartner TJ (2005) A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990–1991. Deep Sea Res II 52(24–26):3116–3149

    Article  Google Scholar 

  • Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003) Temperature and the chemical composition of poikilothermic organisms. Funct Ecol 17:237–245

    Article  Google Scholar 

  • Zakhia F, Jungblut A-D, Taton A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 121–134

    Chapter  Google Scholar 

  • Zhang Y, Jiao N, Hong N (2008) Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical Oceans. Deep Sea Res II 55:1605–1614

    Article  Google Scholar 

  • Zhang F, He J, Xia L, Cai M, Lin L, Guang Y (2010) Applying and comparing two chemometric methods in absorption spectral analysis of photopigments from Arctic microalgae. J Microbiol Methods 83:120–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ma Y, Lin L, Zhang J, He J (2012) Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008. J Microbiol Methods 91:559–565

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (41206189, 41076130), the China International Polar Year Plan and Foreign Cooperation supported by CAAA (IC201307). The data were collected from the third Chinese National Arctic Expedition and issued by the Data-sharing Platform of Polar Science (http://www.chinare.org.cn) maintained by the Polar Research Institute of China (PRIC) and Chinese National Arctic and Antarctic Data Center (CN-NADC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Lin, L., Gao, Y. et al. Ecophysiology of picophytoplankton in different water masses of the northern Bering Sea. Polar Biol 39, 1381–1397 (2016). https://doi.org/10.1007/s00300-015-1860-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1860-3

Keywords

Navigation