Skip to main content

Advertisement

Log in

Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Seabirds are among the most important vectors transferring biogenic compounds from the sea onto land in the polar regions and, consequently, influencing the properties of soil and vegetation. We studied the influence of bird colonies (Adélie penguin Pygoscelis adeliae, gentoo penguin P. papua and giant petrels Macronectes giganteus) on soil properties and plant communities on King George Island, Maritime Antarctic. We designated seven transects, each starting from the colony edge and running to a natural boundary feature, which were divided into contiguous sample plots where we identified specific plant taxa (Prasiola crispa, Deschampsia antarctica, Colobanthus quitensis, Usnea sp.), as well as hydrophilous and xerophilous ecological groups of mosses. Based on percentage contributions of each of these taxa, we distinguished six distinct vegetation zones along the transects, in which we measured physical (moisture, conductivity and pH) and chemical (NO3 , NO2 , NH4 +, K+ and PO4 3− content) soil parameters. Our study confirmed that, with increasing distance from bird colonies, the concentration of nutrients and soil conductivity decreased, while pH increased. The vegetation zones were clearly related to this gradient of seabird colony influence and occurred in the same sequence for all three bird species examined, although the largest colony of Adélie penguins had the strongest effect on vegetation. Similarly, the physical and chemical soil properties did not differ significantly between the colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberdi M, Bravo LA, Gutierrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biol 30:1315–1321

    Article  Google Scholar 

  • Chwedorzewska KJ (2009) Terrestrial Antarctic ecosystems at the changing world—an overview. Pol Polar Res 30:263–273

    Article  Google Scholar 

  • Ciaputa P, Sierakowski K (1999) Long-term population changes of Adélie, chinstrap, and gentoo penguins in the regions of SSSI No. 8 and SSSI No. 34, King George Island, Antarctica. Pol Polar Res 20:355–365

    Google Scholar 

  • Clarke KR, Warwick RM (1994) Changes in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK, p 144

    Google Scholar 

  • Cocks MP, Balfour DA, Stock WD (1998) On the uptake of ornithogenic products by plants on the inland mountains of Dronning Maud Land, Antarctica, using stable isotopes. Polar Biol 20:107–111

    Article  Google Scholar 

  • Convey P (1996) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev 71:191–225

    Article  Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Springer, Netherlands, pp 1–12

    Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, ACCE Consortium (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563

  • Convey P, Brandt A, Nicol S (2013) Life in a cold environment. In: Walton, David WH (eds) Antarctica: global science from a frozen continent. Cambridge University Press, Cambridge, pp 161–210

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  PubMed  Google Scholar 

  • Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961

    Article  CAS  PubMed  Google Scholar 

  • Cygański A (1994) Chemiczne metody analizy ilościowej. Wydawnictwo Naukowo-Techniczne, Warszawa

    Google Scholar 

  • Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268

    Article  Google Scholar 

  • Erskine PD, Bergstrom DM, Schmidt S, Stewart GR, Tweedie CE, Shaw JD (1998) Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15 N natural abundance. Oecologia 117:187–193

    Article  Google Scholar 

  • Favero-Longo SE, Worland MR, Convey P, Lewis Smith RI, Piervittori R, Guglielmin M, Cannone N (2012) Primary succession of lichen and bryophyte communities following glacial recession on Signy Island, South Orkney Islands, Maritime Antarctic. Antarct Sci 24:323–336

    Article  Google Scholar 

  • Forero MG, González-Solís J, Hobson KA, Donázar JA, Bertellotti M, Blanco G, Bortolotti GR (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Mar Ecol Prog Ser 296:107–113

    Article  Google Scholar 

  • Frenot Y, Gloagune JC, Cannavacciuolo M, Bellido A (1998) Primary succession of glacier foreland in the subantarctic Kerguelen Island. J Veg Sci 9:75–84

    Article  Google Scholar 

  • González-Solís J, Croxall JP, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398

    Article  Google Scholar 

  • Greene DM, Holtom A (1971) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: III. Distribution, habitats and performance in the Antarctic botanical zone. British Antarctic Survey Bulletin 1:1–29

    Google Scholar 

  • Hill MO, Šmilauer P (2005) TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice

  • Hovenden MJ, Seppelt RD (1995) Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenol 27:505–516

    Article  Google Scholar 

  • Huang T, Sun L, Wang Y, Chu Z, Qin X, Yang L (2014) Transport of nutrients and contaminants from ocean to island by emperor penguins from Amanda Bay, East Antarctic. Sci Total Environ 468:578–583

    Article  PubMed  Google Scholar 

  • Hunter S (1983) The food and feeding of the giant petrels Macronectes halli and M. giganteus at South Georgia. J Zool Lond 200:521–538

    Article  Google Scholar 

  • Juchnowicz-Bierbasz M, Rakusa-Suszczewski S (2002) Nutrients and cations content in soil solutions from the present and abandoned penguin rookeries (Antarctica, King George Island). Pol J Ecol 50:79–91

    CAS  Google Scholar 

  • Kojima S (2002) A two-year change of arctic vegetation as observed in a permanent plot established in Vegetation types on the northern coast of the Brgger Peninsula 71 Ny-Ålesund, Svalbard. Polar Biosci 15:123–128

    Google Scholar 

  • Korczak-Abshire M (2010) Climate change influences on Antarctic bird populations. Pap Global Change 17:53–66

    Google Scholar 

  • Krzewicka B, Smykla J (2004) The lichen genus Umbilicaria from the neighbourhood of Admiralty Bay (King George Island, maritime Antarctic), with a proposed new key to all Antarctic taxa. Polar Biol 28:15–25

    Google Scholar 

  • Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536

    Article  Google Scholar 

  • Myrcha A, Tatur A (1991) Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol Polar Res 12:3–24

    Google Scholar 

  • Ochyra R (1998) The moss flora of King George Island, Antarctica. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, XXIV pp 279

  • Odasz AM (1994) Nitrate reductase activity in vegetation below an Arctic bird cliff, Svalbard, Norway. J Veg Sci 5:913–920

    Article  Google Scholar 

  • Odum EP (1989) Ecology and our endangered life-support systems. Sinauer Associates, Sunderland, MA

  • Ohtsuka T, Adachi M, Uchida M, Nakatsubo T (2006) Relationships between vegetation types and soil properties along a topographical gradient on the northern coast of the Brøgger Peninsula, Svalbard. Polar Biosc 19:63–72

    Google Scholar 

  • Olech M (2002) Plant communities on King George Island. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 215–231

  • Pudełko R (2002) Site of special scientific interest no. 8 (SSSI 8), King George Island, topographic map, 1:12 500 scale. Warsaw: Department of Antarctic Biology

  • Qin X, Sun L, Blais JM, Wang Y, Huang T, Huang W, Xie Z (2014) From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin J Ocean Limnol 32:148–154

    Article  CAS  Google Scholar 

  • Rakusa-Suszczewski S (2003) Functioning of the geoecosystem for the west side of Admiralty Bay (King George Island, Antarctica)-outline of research at Arctowski station. Ocean Polar Res 25:653–662

    Article  CAS  Google Scholar 

  • Ryan PG, Watkins BP (1989) The influence of physical factors and ornithogenic products on plant and arthropod abundance at an inland nunatak group in Antarctica. Polar Biol 10:151–160

    Google Scholar 

  • Smith RIL (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. London: British Antarctic Survey 124 p (Scientific Reports, no. 68). Illustrations, maps Geog, 4

  • Smith VR (1978) Animal–plant–soil nutrient relationships on Marion Island (Subantarctic). Oecologia 32:239–253

    Article  Google Scholar 

  • Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 61–162

    Google Scholar 

  • Smith VR, Froneman PW (2008) Nutrient dynamics in the vicinity of the Prince Edward Islands. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land–sea interactions in a changing ecosystem. SUN Press, Stellenbosch, pp 165–179

    Google Scholar 

  • Smykla J, Wołek J, Barcikowski A (2007) Zonation of vegetation related to penguin rookeries on King George Island, Maritime Antarctic. Arct Antarct Alp Res 39:143–151

    Article  Google Scholar 

  • StatSoft Inc. (2010) STATISTICA (data analysis software system), version 9.1. www.statsoft.com

  • Stempniewicz L (1990) Biomass of Dovekie excreta in the vicinity of a breeding colony. Colonial Waterbirds 62–66

  • Stempniewicz L (2005) Keystone species and ecosystem functioning. Seabirds in polar ecosystems. Ecol Quest 6:111–115

    Google Scholar 

  • Stempniewicz L, Błachowiak-Samołyk K, Węsławski JM (2007) Impact of climate change on zooplankton communities, seabird populations and Arctic terrestrial ecosystem—a scenario. Deep Sea Res Part II 54:2934–2945

    Article  Google Scholar 

  • Sun L, Zhu R, Xie Z, Xing G (2002) Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmos Environ 36:4977–4982

  • Sun L, Renbin Z, Xuebin Y, Xiaodong L, Zhouqing X, Yuhong W (2004) A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biol 27:670–678

    Article  Google Scholar 

  • Tatur A (2002) Ornithogenic ecosystems in the maritime Antarctic—formation, development and disintegration. Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 161–184

    Chapter  Google Scholar 

  • Tatur A, Myrcha A (1983) Changes in chemical composition of waters running off from the penguin rookeries in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Pol Polar Res 4:113–126  

  • Tatur A, Myrcha A (1984) Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Pol Polar Res 5:31–60

    Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17:405–417

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA, p 496

  • Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M et al (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259. doi:10.1017/S0032247413000296

    Article  Google Scholar 

  • Volkman NJ, Presler P, WZ (1980) Diets of pygoscelid penguins at King George Island, Antarctica. Condor 82:373–378

    Article  Google Scholar 

  • Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 1–60

    Google Scholar 

  • Webb DA (1954) Is the classification of plant communities either possible or desirable. Bot Tidsskr 51:362–370

    Google Scholar 

  • Zarzycki K (1993) Vascular plants and terrestrial biotopes. In: Rakusa-Suszczewski S (ed) The Maritime Antarctic coastal ecosystems of Admiralty Bay. Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, pp 181–187

  • Zdanowski MK, Zmuda MJ, Zwolska I (2005) Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol Biochem 37:581–595

    Article  CAS  Google Scholar 

  • Zhu R, Liu Y, Xu H, Ma D, Jiang S (2013) Marine animals significantly increase tundra N2O and CH4 emissions in maritime Antarctica. J Geophys Res Biogeosci 118:1773–1792

    Article  CAS  Google Scholar 

  • Ziółek M, Melke J (2014) The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen. Polar Res 33:1–12

  • Zmudczyńska K, Zwolicki A, Barcikowski M, Iliszko L, Stempniewicz L (2008) Variability of individual biomass and leaf size of Saxifraga nivalis L. along a transect between seabirds colony and seashore in Hornsund, Spitsbergen. Ecol Quest 9:37–44

    Google Scholar 

  • Zmudczyńska K, Zwolicki A, Barcikowski M, Barcikowski A, Stempniewicz L (2009) Spectral characteristics of the Arctic ornithogenic tundra vegetation in Hornsund area, SW Spitsbergen. Pol Polar Res 30:249–262

    Article  Google Scholar 

  • Zmudczyńska-Skarbek K, Barcikowski M, Zwolicki A, Iliszko L, Stempniewicz L (2013) Variability of polar scurvygrass Cochlearia groenlandica individual traits along a seabird influenced gradient across Spitsbergen tundra. Polar Biol 36:1659–1669

    Article  Google Scholar 

  • Zwolicki A, Zmudczyńska-Skarbek KM, Iliszko L, Stempniewicz L (2013) Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol 36:363–372

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Polish Ministry of Science and Higher Education (Grants No. 1883/P01/2007/32). P. Convey is supported by NERC core funding to the British Antarctic Survey’s Ecosystems Programme. This paper also contributes to the SCAR AnT-ERA research programme. We would like to thank Dr. Lech Iliszko for assistance in data collection and laboratory analyses. Special thanks to Dr. Agata Weydmann and Dr. Katarzyna Zmudczyńska-Skarbek for their helpful criticism of earlier versions of this article. Thanks are also due to the 30th and 31st “Arctowski” expeditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Zwolicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwolicki, A., Barcikowski, M., Barcikowski, A. et al. Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic. Polar Biol 38, 1645–1655 (2015). https://doi.org/10.1007/s00300-015-1730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1730-z

Keywords

Navigation