Skip to main content

Advertisement

Log in

Distribution and composition of the epibenthic megafauna north of Svalbard (Arctic)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Benthic communities north of Svalbard are less investigated than in other Arctic shelf regions, as this area was covered by sea-ice during most of the year. Improving our knowledge on this region is timely, however, since climate change is strongly evident there, particularly with regard to the extent of sea-ice decline and its huge ecological impact on all marine biota, including the benthos. Moreover, longer ice-free periods will certainly lead to an increase in human activity levels in the area, including bottom trawling. In two adjacent shelf and slope regions off northern Svalbard, we studied the composition of epibenthic megafauna and seafloor habitat structures by analyzing seabed images taken with both still and video cameras. In addition, we also used an Agassiz trawl to catch epibenthic organisms for ground-truthing seabed-image information. A wide variety of mostly sessile organisms 141 epibenthic taxa were identified in the images. The brittle star Ophiura sarsii and the soft coral Gersemia rubiformis were the most common species. At all stations >300 m in depth, evidence of trawling activities was detected at the seabed. The distribution of the benthic fauna in the study area exhibited a clear depth zonation, mainly reflecting depth-related differences in seabed composition. We conclude that natural factors determining the composition of the seafloor mostly affect the distribution and composition of epibenthic assemblages. Anthropogenic impact indicated by the trawl scours found is likely also important at smaller spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Ambrose WG Jr, Clough LM, Tilney PR, Beer L (2001) Role of echinoderms in benthic remineralization in the Chukchi Sea. Mar Biol 139:937–949

    Article  CAS  Google Scholar 

  • Antipova TV (1975) Distribution of benthos biomass in the Barents Sea. PINRO Proc 35:121–124

    Google Scholar 

  • Appeltans W, Bouchet P, Boxshall G, De Broyer C, de Voogd N, et al. (2012) World register of marine species. http://www.marinespecies.org. Accessed 20 June 2013

  • Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:408–424

    Article  CAS  Google Scholar 

  • Bergmann M, Soltwedel T, Klages M (2011) The interannual variability of megafaunal assemblages in the Arctic deep sea: preliminary results from the HAUSGARTEN observatory (79 N). Deep-Sea Res I 58:711–723

    Article  Google Scholar 

  • Beukema JJ, Cadée GC, Dekker R (2002) Zoobenthic biomass limited by phytoplankton abundance: evidence from parallel changes in two long-term data series in the Wadden Sea. J Sea Res 48:111–125

    Article  Google Scholar 

  • Blacker RW (1957) Benthic animals as indicators of hydrographic conditions and climate change in Svalbard waters. Fish Invest Ser 2:1–59

    Google Scholar 

  • Blacker RW (1965) Recent changes in the benthos of the West Spitsbergen fishing grounds. Intern Comm Northw Atl Fish Spec Pub 6:791–794

    Google Scholar 

  • Budaeva NE, Mokievsky VO, Soltwedel T, Gebruk AV (2008) Horizontal distribution patterns in the Arctic deep-sea macrobenthic communities. Deep-Sea Res I 55:1167–1178

    Article  Google Scholar 

  • Carroll ML, Cochrane S, Fieler R, Velvin R, White P (2003) Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226:165–180

    Article  CAS  Google Scholar 

  • Carroll ML, Denisenko SG, Renaud PE, Ambrose WG (2008) Benthic infauna of the seasonally ice-covered western Barents Sea: patterns and relationships to environmental forcing. Deep-Sea Res II 55:2340–2351

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cochrane S, Denisenko SG, Renaud PE, Emblow CS, Ambrose WG, Ellingsen IH, Skarðhamar J (2009) Benthic macrofauna and productivity regimes in the Barents Sea—ecological implications in a changing Arctic. J Sea Res 61:222–233

    Article  Google Scholar 

  • Curtis MA (1975) The marine benthos of Arctic and sub-Arctic continental shelves. a review of regional studies and their general results. Polar Rec 17:595–626

    Article  Google Scholar 

  • Fautin DG (2012) Hexacorallians of the World. http://geoportal.kgs.ku.edu/hexacoral/anemone2/index.cfm. Accessed 20 Feb 2012

  • Feder HM, Foster NR, Jewett SC, Weingartner TJ, Baxter R (1994) Mollusks in the northeastern Chukchi Sea. Arctic 47:145–163

    Article  Google Scholar 

  • Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190

    Google Scholar 

  • Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic–benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:495–518

    Article  Google Scholar 

  • Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic–benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67

    Article  Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Article  Google Scholar 

  • Gröger J, Rumohr H (2006) Modelling and forecasting long-term dynamics of western Baltic macrobenthic fauna in relation to climate signals and environmental change. Neth J Sea Res 55:266–277

    Article  Google Scholar 

  • Gulliksen B, Svensen E (2004) Svalbard and life in polar oceans. Kom Forlag, Oslo

    Google Scholar 

  • Gulliksen B, Palerud R, Brattegard T, Sneli J-A (1999) Distribution of marine benthic macro-organisms at Svalbard (including Bear Island) and Jan Mayen. Nor Dir Nat Manag, Oslo

    Google Scholar 

  • Hiscock K (1996) Marine nature conservation review: rationale and methods. Joint Nature Conservation Committee, Peterborough

    Google Scholar 

  • Holte B, Gulliksen B (1998) Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biol 19:375–382

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep-Sea Res I 54:109–129

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Josefson AB (1987) Large-scale patterns of dynamics in subtidal macrozoobenthic assemblages in the Skagerrak: effects of a production-related factor? Mar Ecol Prog Ser 38:13–23

    Article  Google Scholar 

  • Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser 311:1–14

    Article  Google Scholar 

  • Kendall MA, Widdicombe S, Weslawski JM (2003) A multi-scale study of the biodiversity of the benthic infauna of the high latitude Kongsfjord, Svalbard. Polar Biol 26:383–388

    Google Scholar 

  • Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64

    Article  Google Scholar 

  • Kröncke I (1995) Long term changes in North Sea benthos. Senckenb Marit 26:73–80

    Google Scholar 

  • Kröncke I, Dippner JW, Heyen H, Zeiss B (1998) Long-term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability. Mar Ecol Prog Ser 167:25–36

    Article  Google Scholar 

  • Kröncke I, Zeiss B, Rensing C (2001) Long-term variability in macrofauna species composition off the island of Norderney (East-Frisia, Germany) in relation to changes in climatic and environmental conditions. Senckenb Marit 31:65–82

    Article  Google Scholar 

  • Levinton J (1992) The big bang of animal evolution. Sci Am 267:84–91

    Article  CAS  PubMed  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM (1987) Vertex: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Article  CAS  Google Scholar 

  • Moen FE, Svensen E (2004) Marine fish and invertebrates of Northern Europe. AquaPress

  • Onarheim IH, Smedsrud LH, Ingvaldsen RB, Nilsen F (2014) Loss of sea ice during winter north of Svalbard. Tellus A 66:23933

    Article  Google Scholar 

  • Palomares MLD, Pauly D (eds) (2014) SeaLifeBase, version (01/2012). Pandalus borealis. http://www.org. Accessed 12 Feb 2014

  • Pearson TH, Barnett PRO (1987) Long-term changes in benthic populations in some west European coastal areas. Estuaries 10:220–226

    Article  Google Scholar 

  • Pearson TH, Mannvik HP (1998) Long-term changes in the diversity and faunal structure of benthic communities in the northern North Sea: natural variability or induced instability? Hydrobiologia 376:317–329

    Article  Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–331

    Google Scholar 

  • Perry RI, Curry P, Brander K, Jennings S, Möllmann C, Planque B (2010) Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J Mar Syst 79:427–435

    Article  Google Scholar 

  • Piepenburg D (2005) Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28:733–755

    Article  Google Scholar 

  • Piepenburg D, Schmid MK (1996) Brittle star fauna (Echinodermata: ophiuroidea) of the Arctic north-western Barents Sea: composition, abundance, biomass and spatial distribution. Polar Biol 16:383–392

    Article  Google Scholar 

  • Piepenburg D, Archambault P, Ambrose WG Jr, Blanchard A, Bluhm BA, Carroll ML, Conlan K, Cusson M, Feder HM, Grebmeier JM, Lévesque M, Petryashev V, Sejr M, Sirenko B, Włodarska-Kowalczuk M (2011) Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Mar Biodiv 41:51–70

    Article  Google Scholar 

  • Reise K, Schubert A (1987) Macrobenthic turnover in the subtidal Wadden Sea: the Norderaue revisited after 60 years. Helgoland Mar Res 41:69–82

    Google Scholar 

  • Renaud PE, Carroll ML, Ambrose WG Jr (2007) Effects of global warming on Arctic sea-floor communities and its consequences for higher trophic levels. In: Duarte CM, Agustí S (eds) Impacts of global warming on polar ecosystem. Fundación BBVA, Bilbao, pp 141–177

    Google Scholar 

  • Renaud PE, Morata N, Carroll ML, Denisenko SG, Reigstad M (2008) Pelagic–benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res II 55:2372–2380

    Article  CAS  Google Scholar 

  • Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food availability. Neth J Sea Res 34:303–317

    Article  Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–81

    Chapter  Google Scholar 

  • Smith CJ, Rumohr H (2005) Imaging techniques. In: Eleftjeriou A, McIntyre A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell, Oxford, pp 87–111

    Chapter  Google Scholar 

  • Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol Annu Rev 32:111–177

    Google Scholar 

  • Soltwedel T, Bauerfeind E, Bergmann M, Budaeva N, Hoste E, Jaeckisch N, Juterzenka K, Matthießen J, Mokievsky V, Nöthig E, Quéric N, Sablotny B, Sauter E, Schewe I, Urban-Malinga B, Wegner J, Wlodarska-Kowalczuk M, Klages M (2005) HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean. Oceanography 18:46–61

    Article  Google Scholar 

  • Soltwedel T, Jaeckisch N, Ritter N, Hasemann C, Bergmann M, Klages M (2009) Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:1856–1872

    Article  CAS  Google Scholar 

  • Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280

    Article  Google Scholar 

  • Stiansen JE, Korneev O, Titov O, Arneberg P, Filin A, Hansen JR, Høines Å, Marasaev S (eds) (2009) Joint Norwegian–Russian environmental status 2008. Report on the Barents Sea ecosystem. Part II: complete report. IMR/PINRO Jt Rep Ser 2009(3):1–375

  • Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288:260–265

    Article  CAS  Google Scholar 

  • Sweetman A, Chapman A (2011) First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep-Sea Res I 58:1206–1211

    Article  CAS  Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80 31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago). Phycologia 51:371–390

    Article  Google Scholar 

  • Tunberg BG, Nelson WG (1998) Do climatic oscillations influence cyclical patterns of soft bottom macrobenthic communities on the Swedish west coast? Mar Ecol Progr Ser 170:85–94

    Article  Google Scholar 

  • Underwood AJ (1996) Detection, interpretation, prediction and management of environmental disturbances: some roles for experimental marine ecology. J Exp Mar Biol Ecol 200:1–27

    Article  Google Scholar 

  • van Oevelen D, Bergmann M, Soetaert K, Bauerfeind E, Hasemann C, Klages M, Schewe I, Soltwedel T, Budaeva N (2011) Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep-Sea Res I 58:1069–1083

    Article  Google Scholar 

  • Wassmann P, Reigstad M, Haug T, Rudels B, Carroll ML, Hop H, Gabrielsen GW, Falk-Petersen S, Denisenko SG, Arashkevich E, Slagstad D, Pavlova O (2006) Food webs and carbon flux in the Barents Sea. Progr Oceanogr 71:232–287

    Article  Google Scholar 

  • Weslawski JM, Wlodarska-Kowalczuk M, Legezynska J (2003) The occurrence of soft bottom macrofauna along the depth gradient in the High Arctic, 79 N. Pol Polar Res 23:73–88

    Google Scholar 

  • Whittington RJ, Forsberg CF, Dowdeswell JA (1997) Seismic and side-scan sonar investigations of recent sedimentation in an ice-proximal glacimarine setting, Kongsfjorden, north–west Spitsbergen. In: Davies TA et al (eds) Glaciated continental margins—an atlas of acoustic images. Chapman and Hall, London, pp 175–178

    Chapter  Google Scholar 

  • Wlodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167

    Article  Google Scholar 

  • Wlodarska-Kowalczuk M, Weslawski JM, Kotwicki L (1998) Spitsbergen glacial bays macrobenthos—a comparative study. Polar Biol 20:66–73

    Article  Google Scholar 

  • Zenkevich LA (1963) The biology of the seas of the USSR. Academy of Science of the USSR, Moscow

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the helping hands from Greenpeace, the Institute for Polar Ecology of the University of Kiel (Germany), the University Centre of Svalbard (UNIS) (Norway) and the students from UNIS course AB-321, as well as the University of Tromsø (Norway) and Akvaplan-NIVA (Norway). We are especially grateful to the scientists helping us with identifying the organisms and providing information on the region around Svalbard, especially J. Berge, T. Brattegard, S. Cochrane, P. Kuklinski, A. Plotkin, P. Renaud, A.H. Tandberg and M. Włodarska-Kowalczuk. The study was funded by Greenpeace (Germany). Finally, we would like to thank the three reviewers who provided very valuable advice that helped a lot in the revision of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sswat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

300_2015_1645_MOESM1_ESM.pdf

Online Resource 1: Presence–absence data of all benthic taxa identified in seabed images and Agassiz trawl catches taken north of Svalbard in 2010/2011 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sswat, M., Gulliksen, B., Menn, I. et al. Distribution and composition of the epibenthic megafauna north of Svalbard (Arctic). Polar Biol 38, 861–877 (2015). https://doi.org/10.1007/s00300-015-1645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1645-8

Keywords

Navigation