Skip to main content
Log in

Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass (Deschampsia antarctica Desv)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Deschampsia antarctica is the only hair grass that has been able to successfully colonize the Antarctic continent. However, there is little research on the role of microorganisms associated with the rhizosphere that may participate in its growth and development. The objective of this research was to characterize a psychrotolerant bacterial strain isolated from the rhizosphere of D. antarctica. Biochemical and molecular studies were performed to characterize this bacterium. It was determined that this strain secretes a neutral polysaccharide that presents different compositions at different temperatures (4 and 20 °C). Based on biochemical and phylogenetic analyses, the Antarctic rhizobacterium could be a new species of Pseudomonas. To determine their ability to solubilize different sources of inorganic phosphate, qualitative and quantitative analyses were conducted to determine P released at 4 °C. The Antarctic strain of Pseudomonas sp. was able to solubilize all sources of phosphates, and 34.2 mg P/L was released from rock phosphate. Growth physiological parameters were evaluated for seedlings of D. antarctica inoculated with the rhizobacteria. It was found that the bacterial inoculation promoted plant root development. SEM analysis of the roots showed that the bacterium is mainly located in the root hairs of D. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Saghir M (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Alberdi M, Bravo L, Gutierrez A, Gidekel M, Corcuera L (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  PubMed  CAS  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical Role of Anteiso-C15: 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    PubMed  CAS  Google Scholar 

  • Baida N, Yazourhb A, Singer E, Izard D (2001) Pseudomonas sp brenneri. nov., a new species isolated from natural mineral waters. Res Microbiol 152:493–502

    Article  PubMed  CAS  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55:541–555

    Article  CAS  Google Scholar 

  • Barrientos L, Gidekel M, Gutiérrez A (2008) Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World J Microbiol Biotech 24:2289–2296

    Article  Google Scholar 

  • Beech I, Hanjagsit L, Kalaji M, Neal A, Zinkevich V (1999) Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiol 145:1491–1497

    Article  CAS  Google Scholar 

  • Bonet R, Simon-Pujol MD, Assembled F (1993) Effects of nutrients on exopolysaccharide production and surface propierties of Aeromonas salmonicida. Appl Environ Microbiol 59:2437–2441

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bric J, Bostock R, Silverstone S (1991) Rapid in situ assay for indoleacetic acid production by bacteria inmobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    PubMed  CAS  Google Scholar 

  • Cakmakci R, Donme F, Aydin Sahin AF (2006) Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two field different soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young SC (2006) Phosphate solubilizing bacteria from subtropical soil tricalcium phosphate solubilizing and their abilities. Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chew O, Lelean S, John UP, Spangenberg GC (2012) Cold acclimation you induce rapid and dynamic changes file in freeze tolerance in the cryophile mechanisms Deschampsia antarctica E. Desv. Plant Cell Environ 35:829–837

    Article  CAS  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642

    CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Corsaro MM, Lanzetta R, Parrilli E, Parrilli M, Tutino ML, Ummarino S (2004) Influence of growth temperature on lipid and phosphate contents of surface polysaccharides from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. J Bacteriol 186:29–34

    Article  PubMed  CAS  Google Scholar 

  • Das AC (1989) Utilization of insoluble phosphates by soil fungi. Indian J Soc Soil Sci 58:1208–1211

    Google Scholar 

  • Deubel A, Gransee Merbach W (2000) Transformation of organic rhizodeposits byn rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J (2002) Effect of inoculation with wild type Azospirrillum brasilense and A. Irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol Fertil Soils 36:283–297

    Article  Google Scholar 

  • Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Giełwanowska I, Pastorczyk M, Kellmann-Sopyła W (2011) Influence of environmental changes on polar physiology and development of vascular plants. Papers on Global Change IGBP 18:53–62

    Article  Google Scholar 

  • Goenadi DH, Siswanto, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th International Fertilizer Association Technical conference, New York

  • Gulati A, Rahi P, Vyas P (2007) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  PubMed  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in Improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hansen M, Kragelund L, Ybroe O, Sorensen J (1997) Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23:353–360

    Article  CAS  Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    Article  PubMed  CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borris R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  PubMed  CAS  Google Scholar 

  • Illmer P (1995) Solubilization of hardly-soluble AIPO4 with P solubilizing microorganism. Soil Biol Biochem 27:265–270

    Google Scholar 

  • Katiyar V, Goel A (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    Article  PubMed  CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Review Article. Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    Article  PubMed  CAS  Google Scholar 

  • Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC Al74. Bioresour Technol 97:957–960

    Article  PubMed  CAS  Google Scholar 

  • Mancuso C, Garon S, Bowman J, Nichols P, Gibson J, Guézennec J (2005) Chemical Characterization of exopolysaccharides from Antarctic marine bacteria. Microbial Ecol 49:578–589

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    Google Scholar 

  • Nedwell D, Rutfer M (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: diminishes affinity for low temperature substrate uptake. Appl Environ Microbiol 60:1984–1992

    PubMed  CAS  Google Scholar 

  • Nevot MV, Deroncele Ma, Forestry J, Mercade E (2008) Effect of incubation temperature on growth parameters of Pseudoalteromonas antarctica NF3 production of extracellular and its polymeric substances. J Appl Microbiol 105:255–263

    Article  PubMed  CAS  Google Scholar 

  • Nichols CM, Bowman JP, Guezennec J (2005) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol 71:3519–3523

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ (2005) Genus I. Pseudomonas Migula 1894, 237AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology volume 2: the Proteobacteria Part B the Gammaproteobacteria. Springer, New York, pp 322–379

    Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica. Polar Biol 25:5–11

    Article  Google Scholar 

  • Park Y, Lee Y, Yi H, Kim Y, Bae K, Choi J, Sung H, Jung HS, Chun J (2005) Pseudomonas sp panacis. nov., isolated from the surface of rusty roots of Korean ginseng. Int J Syst Evol Micr 55:1721–1724

    Article  CAS  Google Scholar 

  • Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the maritime Antarctic: origin and adaptation. Am J Plant Sci 2:381–395

    Article  Google Scholar 

  • Parsello-Cartieaux F, Pascale D, Sarrobert C, Thibaud MC, Achouak W, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198

    Article  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Pucci G, Pucci O (2006) Changes in membrane fatty acids ester aromaticum Microbacterium GNP-5 at different temperatures and osmolarities. Argent J Microbiol 11:61–73

    Google Scholar 

  • Quezada E, Bejar V, Calvo C (1993) Exopolysaccharide production by Volcaniella euryhaline. Experientia 49:1037–1041

    Article  Google Scholar 

  • Reddy G, Matsumoto G, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic Pseudomonas from Antarctica: pseudomonas antarctica sp. nov., Pseudomonas sp meridian. nov. and Pseudomonas sp proteolytica. nov. Int J Syst Evol Micr 54:713–719

    Article  CAS  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2007) Phosphate solubilizing microorganisms isolated from rhizospheric and bulk soils of plants at an abandoned colonizer phosphate rock mine. In: Velázquez E, Rodriguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, pp 69–75

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rosas SB, Andrew JA, Rovera M, Correa N (2006) Phosphate-solubilizing Pseudomonas putida can rhizobia-legume Influence the symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Ruhland CT, Xiong FS, Clark D, Day T (2005) The Influence of Ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photobio Photoch J 81:1086–1093

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annl Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra P, Gupta KHS (2008) Characterization of a cold-tolerant plant growth-promoting bacterium isolated from Pantoea 1A dispersed to sub-alpine soil in the North Western Indian Himalayas. World J Microb Bio 24:955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009) Phosphate Solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biology 64:239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt C, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microb Biot 27:1129–1135

    Article  CAS  Google Scholar 

  • Singal R, Gupta R, Kuhad RC, Saxena RK (1991) Solubilization of inorganic phosphates by a fungus Basidiomycetous cuathus. Indian J Microbiol 31:397–401

    Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  Google Scholar 

  • Stevenson FJ (2005) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Sutherland IW (1990) Biotechnology of microbial exopolysaccharide. In: Baddiley J, Carey NH, Higgins IJ, Pitter WG (eds) Cambridge studies in biotechnology, vol 9. Cambridge University Press, Cambridge

    Google Scholar 

  • Sutherland IW (1993) Xanthan. In: Swing JG, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London, pp 363–388

    Chapter  Google Scholar 

  • Taboada E, Fisher P, Jara R, Zúñiga E, Gutierrez A, Cabrera JC, Gidekel M, Villalonga R, Cabrera G (2010) Isolation and characterization of pectic substances from murta (Ugni molinae) fruits. Food Sci 123:669–678

    CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) Mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification forphylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Weldman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Microbiol 21:269–274

    Google Scholar 

Download references

Acknowledgments

The authors thank Ramon Rossello Mora for his assistance with phylogenetic analyses. The authors thank Charles Guy for his help in the translation and proofreading of the manuscript. Monica Ramirez and Yamile Bernardo are thanked for their assistance with HPLC Analyses. The authors thank INACH 0301 Grants; UXMAL S.A.: Doctorate Fellowship CONICYT Graciela Berríos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gutiérrez-Moraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berríos, G., Cabrera, G., Gidekel, M. et al. Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass (Deschampsia antarctica Desv). Polar Biol 36, 349–362 (2013). https://doi.org/10.1007/s00300-012-1264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1264-6

Keywords

Navigation