Skip to main content
Log in

Complementary DNA library construction and expressed sequence tag analysis of an Arctic moss, Aulacomnium turgidum

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Unique physiological and metabolic properties of Arctic mosses are responsible for their acclimation to the inclement polar environment. To perform transcriptome analysis of an Arctic moss species adapted to polar conditions, we constructed a complementary DNA (cDNA) library using total high-quality RNA extracted from the moss species Aulacomnium turgidum. The library consisted of 1.81 × 106 of independent clones with 97.41% of recombinants. A total of 509 cDNA clones were sequenced. After eliminating poor quality sequences, vector trimming and clustering, 360 unigenes consisting of 33 contigs and 327 singletons were identified. Basic Local Alignment Search Tool X searches generated 245 significant hits (E value <10−5). For further Gene Ontology analysis, 158 unigenes were annotated and classified with terms for molecular function, biological process and cellular component. Among the expressed sequence tags, seven genes were selected based on their putative roles in stress response, and they showed enhanced transcripts level under various abiotic stresses such as low temperature, heat and high-salinity. Also, two rare-cold-inducible genes showed different expression patterns under low temperature and UV-B treatment, indicating their distinct roles in adaptation to Arctic environment. Although experiments have been conducted on a limited scale, this study provides useful information for better understanding the mechanism of stress acclimation of polar mosses and material basis for potential genomic modification for higher plants to increase stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255. doi:10.1104/pp.103.022277

    Article  CAS  PubMed  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95. doi:10.1007/BF00265581

    Article  Google Scholar 

  • Ayres E, van der Wal R, Sommerkorn M, Bardgett RD (2006) Direct uptake of soil nitrogen by mosses. Biol Lett 2:286–288. doi:10.1098/rsbl.2006.0455

    Article  CAS  PubMed  Google Scholar 

  • Barber J, De Las Rivas J (1993) A functional model for the role of cytochrome b559 in the protection against donor and acceptor side photoinhibition. Proc Natl Acad Sci USA 90:10942–10946. doi:10.1073/pnas.90.23.10942

    Article  CAS  PubMed  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. doi:10.1111/j.1469-185X.1968.tb00968.x

    Article  Google Scholar 

  • Birks HJB, Jones VJ, Rose NL (2004) Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments—an introduction. J Paleolimnol 31:403–410. doi:10.1023/B:JOPL.0000022542.87722.a6

    Article  Google Scholar 

  • Birnboim HC (1992) Extraction of high molecular weight RNA and DNA from cultured mammalian cells. Methods Enzymol 216:154–160

    Article  CAS  PubMed  Google Scholar 

  • Brown AP, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L) gene blt101.1. Planta 213:770–780. doi:10.1007/s004250100549

    Article  CAS  PubMed  Google Scholar 

  • Capel J, Jarillo JA, Salinas J, Martínez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115:569–576. doi:10.1104/pp.115.2.569

    Article  CAS  PubMed  Google Scholar 

  • Flatberg KI, Thingsgaard K (2003) Taxonomy and geography of Sphagnum tundrae with a description of S. mirum, sp. nov. (Sphagnaceae, sect. Squarrosa). Bryol 106:501–515. doi:10.1639/0007-2745(2003)106[501:TAGOST]2.0.CO;2

    Article  Google Scholar 

  • Frishman D (2007) Protein annotation at genomic scale: the current status. Chem Rev 107:3448–3466. doi:10.1021/cr068303k

    Article  CAS  PubMed  Google Scholar 

  • Fu XH, Geng SL, Su GH, Zeng QL, Shi SH (2004) Isolating high-quality RNA from mangroves without liquid nitrogen. Plant Mol Biol Report 22:197a–197e. doi:10.1007/BF02772728

    Article  Google Scholar 

  • Goddard NJ, Dunn MA, Zhang AJ, White PL, Jack PL, Hughes MA (1993) Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt 101. Plant Mol Biol 23:871–879

    Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, Van der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941. doi:10.1007/s00442-007-0785-0

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Såstad SM, Flatberg KI (2003) Ploidy determination in Sphagnum samples from Svalbard, Arctic Norway, by DNA image cytometry. J Bryol 25:235–239. doi:10.1179/037366803225013083

    Article  Google Scholar 

  • Harris MA, Clark J, Ireland A et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261. doi:10.1093/nar/gkh036

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Brown A, Baumann U (2007) Estimating the annotation error rate of curated GO database sequence annotations. BMC Bioinformatics 8:170. doi:10.1186/1471-2105-8-170

    Article  PubMed  Google Scholar 

  • Lee H, Cho HH, Kim IC, Yim JH, Lee HK, Lee YK (2008) Expressed sequence tag analysis of Antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica. Mol Cells 25:258–264

    CAS  PubMed  Google Scholar 

  • Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. Blackwell, Oxford, pp 69–96

    Google Scholar 

  • Lovelock CE, Jackson AE, Melick DR, Seppelt RD (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961

    CAS  PubMed  Google Scholar 

  • Mathew A, Morimoto RI (1998) Role of the heat-shock response in the life and death of proteins. Ann N Y Acad Sci 851:99–111. doi:10.1111/j.1749-6632.1998.tb08982.x

    Article  CAS  PubMed  Google Scholar 

  • Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin–proteasome pathway. Mol Cell Biol 18:5091–5098

    CAS  PubMed  Google Scholar 

  • Medina J, Catalá R, Salinas J (2001) Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125:1655–1666. doi:10.1104/pp.125.4.1655

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252. doi:10.1128/MMBR.70.1.222-252.2006

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767. doi:10.1104/pp.103.025742

    Article  CAS  PubMed  Google Scholar 

  • Reski R, Frank W (2005) Moss (Physcomitrella patens) functional genomics-gene discovery and tool development, with implications for crop plants and human health. Brief Funct Genomics Proteomics 4:48–57. doi:10.1093/bfgp/4.1.48

    Article  CAS  Google Scholar 

  • Rogers EE, Ausubel FM (1997) Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to severa1 bacterial pathogens and alterations in PR-I gene expression. Plant Cell 9:305–316. doi:10.1105/tpc.9.3.305

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Skotnicki ML, Ninhami JA, Selkirk PM (2000) Genetic diversity, mutagenesis and dispersal of Antarctic mosses—a review of progress with molecular studies. Antarct Sci 12:363–373

    Article  Google Scholar 

  • Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarct Sci 17:377–384. doi:10.1017/S0954102005002816

    Article  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi:10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I (1995) Responses of photosynthesis to stress and plant growth regulators. Bulg J Plant Physiol 21:51–70

    CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by a Grant PE08050 from the Korea Polar Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Chan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Lee, H., Kang, PS. et al. Complementary DNA library construction and expressed sequence tag analysis of an Arctic moss, Aulacomnium turgidum . Polar Biol 33, 617–626 (2010). https://doi.org/10.1007/s00300-009-0737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0737-8

Keywords

Navigation