Skip to main content
Log in

Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The interactive effects of UV-B-exposure and increased temperature were investigated in the two green macroalgae Ulva bulbosa from Antarctica and Ulva clathrata from southern Chile in the laboratory. At seawater temperatures of 0°C, UV-induced inhibition of photosynthesis was much larger in U. clathrata than in U. bulbosa, whereas temperatures of 10°C compensated UV-effects in both species. Despite pronounced photoinhibition, damage to D1 protein in photosystem II could not be detected, indicating that photosynthetic reaction centers were unaffected by experimental UV-exposure. In addition, marked differences in the generation of oxidative stress were not detected. Under all treatments, the activity of superoxide dismutase was higher in U. bulbosa than in U. clathrata, indicating a higher degree of cold adaptation in U. bulbosa from Antarctica, resulting in a higher UV-tolerance at 0°C than in U. clathrata from southern Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera J, Dummermuth A, Kartsen U, Schrieck R, Wiencke C (2002) Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441

    Google Scholar 

  • Arntz WE, Thatje S, Gerdes D, Gili J-M, Gutt J, Jacob U, Montiel A, Orejas C, Teixidó N (2005) The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci Mar 69(Suppl 2):237–269

    Google Scholar 

  • Asada K (1997) The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 715–735

    Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998a) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998b) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444

    CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (2000) Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562

    Article  PubMed  CAS  Google Scholar 

  • Bischof K, Janknegt PJ, Buma AGJ, Rijstenbil JW, Peralta G, Breeman AM (2003) Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain. Sci Mar 67:353–359

    Article  CAS  Google Scholar 

  • Bischof K, Rautenberger R, Brey L, Pérez-Lloréns JL (2006) Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser 306:165–175

    CAS  Google Scholar 

  • Bischoff B, Wiencke C (1995a) Temperature ecotypes and biogeography of Acrosiphonales (Chlorophyta) with Arctic–Antarctic disjunct and Arctic/cold-temperature distributions. Eur J Phycol 30:19–27

    Google Scholar 

  • Bischoff B, Wiencke C (1995b) Temperature adaptation in strains of the amphi-equatoial green alga Urospora penicilliformis (Acrosiphonales): biogeographical implications. Mar Biol 122:681–688

    Article  Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic rhodophyta. J Phycol 32:525–535

    Article  Google Scholar 

  • Bischoff-Bäsmann B (1997) Temperature requirements and biogeography of marine macroalgae—adaptation of marine macroalgae to low temperatures. Rep Polar Res 245:134

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buschmann AH (1990) Intertidal macroalgae as refuge and food for amphipoda in Central Chile. Aquat Bot 36:273–245

    Article  Google Scholar 

  • Caldwell MM (1971) Solar UV radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Current topics in photobiology and photochemistry, vol 6. Academic, New York, pp 131–177

  • Casiccia C, Kirchhoff VWJH, Torres A (2003) Simultaneous measurements of ozone and ultraviolet radiation: Spring 2000, Punta Arenas, Chile. Atmos Environ 37:383–389

    Article  CAS  Google Scholar 

  • Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25

    Article  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Article  Google Scholar 

  • Gómez I (1997) Life strategies and ecophysiology of Antarctic macroalgae. Rep Pol Res 238:99

    Google Scholar 

  • Gómez I, Figueroa FL, Sousa-Pinto I, Viñegla B, Pérez-Rodríguez E, Maestre C, Coelho S, Felga A, Pereira R (2001) Effects of UV radiation and temperature on photosynthesis as measured by PAM fluorescence in the red alga Gelidium pulchellum (Turner) Kützing. Bot Mar 44:9–16

    Article  Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    Article  CAS  Google Scholar 

  • Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294

    Article  Google Scholar 

  • Henley WJ, Ramus J (1989) Photoacclimation of Ulva rotundata (Chlorophyta) under natural irradiance. Mar Biol 103:261–266

    Article  Google Scholar 

  • Iken K (1996) Trophic relations between macroalgae and herbivores in Potter Cove (King George Island, Antarctica). Rep Polar Res 201:206

    Google Scholar 

  • Kirchhoff VWJH, Sahai Y, Casiccia CAR, Zamorano F, Valderrama V (1997) Observations of the 1995 ozone hole over Punta Arenas, Chile. J Geophys Res (D Atmos) 102:16109–16120

    Article  CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Article  Google Scholar 

  • Klöser H (1994) Descripcion basica de caleta potter y costas abiertas adyacentes. Direccion Nacional del Antartico: Reporte de datos: Estructura y dinamica de un ecosistema costero antartico. Estacion cientifica “Teniente Jubany”, en la Isla 25 de Mayo (King George Island) Islas Shetland del Sur. Constribucion No. 419B

  • Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1994) Hydrography of Potter Cove, a small fjord-like inlet on King George Island (South Shetlands). Estuar Coast Shelf Sci 38:523–537

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Ann Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase—an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Michler T, Aguilera J, Hanelt D, Bischof K, Wiencke C (2002) Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Mar Biol 140:1117–1127

    Article  CAS  Google Scholar 

  • Öquist G, Hurry VM, Huner NPA (1993) The temperature dependence of the redox state of QA and susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31:683–689

    Google Scholar 

  • Poole LJ, Raven JA (1997) The biology of Enteromorpha. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 12, pp 1–148

  • Post A, Larkum AWD (1993) UV-absorbing pigments, photosynthesis and UV-exposure in Antarctica: comparison of terrestrial and marine algae. Aquat Bot 45:231–243

    Article  Google Scholar 

  • Provasoli L (1968) Media and prospects for cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Japanese Society of Plant Physiology, Tokyo, pp 47–74

    Google Scholar 

  • Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Monografías Biológicas. Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago de Chile, pp 28–30

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Santelices B (1989) Algas Marinas de Chile. Distribucion, Ecologia, Utilizacion, Diversidad. Ediciones Universidad Católica de Chile, Santiago de Chile, p 399

  • Schloss I, Ferreyra GA, Klöser H (1998) Seasonal variation of the conditions for phytoplankton growth in Potter Cove. Rep Polar Res 299:59–66

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecol Stud Anal Synth, vol 100, pp 49–70

  • Strid A, Chow WS, Anderson JM (1990) Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim Biophys Acta 1020:260–268

    Article  CAS  Google Scholar 

  • van de Poll WH, Eggert A, Buma AGJ, Breeman AM (2002) Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes. Eur J Phycol 37:59–68

    Article  Google Scholar 

  • van de Poll WH, Bischof K, Buma AGJ, Breeman AM (2003a) Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiol Plant 118:74–83

    Article  Google Scholar 

  • van de Poll WH, Bischof K, Buma AGJ, Breeman AM (2003b) Acclimation of the temperate marine red macrophyte Chondrus crispus to Ultraviolet-B radiation. Patterns in ultraviolet radiation sensitivity of tropical, temperate and Arctic marine macroalgae. Rijksuniversiteit Groningen, Groningen, pp 73–83

    Google Scholar 

  • Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker Inc., New York, pp 931–949

    Google Scholar 

  • Waple AM, Schnell RC, Stone RS (2004) Polar climate. In: Levinson DH, Waple AM (eds) State of the climate 2003. Bull Am Meteorol Soc, vol 85, pp S1–S72

  • Weykam G (1996) Photosynthetic characteristics and life-strategies of Antarctic macroalgae. Rep Pol Res 192:132

    Google Scholar 

  • Wiencke C (1990) Seasonality of red and green macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607

    Article  Google Scholar 

  • Wiencke C, tom Dieck I (1989) Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Mar Ecol Prog Ser 54:189–197

    Google Scholar 

  • Wiencke C, tom Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170

    Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Act 106:78–87

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. A.R.G. Gantner Verlag, Ruggel, Lichtenstein, Synopsis Antarctic Benthos 9, pp 239

  • Xue L, Zhang Y, Zhang T, An L, Wang X (2005) Effects of enhanced Ultraviolet-B radiation on algae and cyanobacteria. Crit Rev Microbiol 31:79–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Alfred Wegener Institute for Polar and Marine Research (Bremerhaven, Germany) for providing cultures of Ulva species and to A. Schneider for protein and MDA analysis. Funding of this study by the “Deutsche Forschungsgemeinschaft” (BI 772/2-1) and the “Helmholtz-Gemeinschaft deutscher Forschungszentren” (VH-NG-059) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rautenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautenberger, R., Bischof, K. Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biol 29, 988–996 (2006). https://doi.org/10.1007/s00300-006-0141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0141-6

Keywords

Navigation