Skip to main content
Log in

AgMYB12, a novel R2R3-MYB transcription factor, regulates apigenin biosynthesis by interacting with the AgFNS gene in celery

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of AgMYB12 in celery improved the accumulation of apigenin by interacting with the AgFNS gene.

Abstract

Celery is a common vegetable, and its essential characteristic is medicine food homology. A natural flavonoid and a major pharmacological component in celery, apigenin plays an important role in human health. In this study, we isolated a novel R2R3-MYB transcription factor that regulates apigenin accumulation from the celery cultivar ‘Jinnan Shiqin’ through yeast one-hybrid screening and designated it as AgMYB12. The AgMYB12 protein was located in the nucleus. It showed transcriptional activation activity and bound specifically to the promoter of AgFNS, a gene involved in apigenin biosynthesis. Phylogenetic tree analysis demonstrated that AgMYB12 belongs to the flavonoid branch. It contains two flavonoid-related motifs, SG7 and SG7-2, and shared a highly conserved R2R3 domain with flavonoid-related MYBs. The homologous overexpression of AgMYB12 induced the up-regulation of AgFNS gene expression and accumulation of apigenin and luteolin in celery. Additionally, the expression levels of apigenin biosynthesis-related genes, including AgPAL, AgCHI, AgCHS, Ag4CL, and AgC4H, increased in transgenic celery plants. These results indicated that AgMYB12 acted as a positive regulator of apigenin biosynthesis and activated the expression of AgFNS gene. The current study provides new information about the regulation mechanism of apigenin metabolism in celery and offers a strategy for cultivating the plants with high apigenin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data used to support the findings of this study are included within the article.

Code availability

Not applicable.

References

  • Ballester AR, Molthoff J, Vos RD, Hekkert BL, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicek M, Unsal V, Doganer A, Demir M (2021) Investigation of oxidant/antioxidant and anti-inflammatory effects of apigenin on apoptosis in sepsis-induced rat lung. J Biochem Mol Toxicol 35(5):e22743

    Article  CAS  PubMed  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Xia C, Cao ZX, Zheng JZ, Reed E, Jiang BH (2005) Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J 19(3):342–353

    Article  CAS  PubMed  Google Scholar 

  • Feng K, Hou XL, Li MY, Jiang Q, Xu ZS, Liu JX, Xiong AS (2018a) CeleryDB: a genomic database for celery. Database (Oxford) 1:bay070

    Google Scholar 

  • Feng K, Liu JX, Duan AQ, Li T, Yang QQ, Xu ZS, Xiong AS (2018b) AgMYB2 transcription factor is involved in the regulation of anthocyanin biosynthesis in purple celery (Apium graveolens L.). Planta 248(5):1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Feng K, Liu JX, Xing GM, Sun S, Li S, Duan AQ, Wang F, Li MY, Xu ZS, Xiong AS (2019) Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 24(7):e7925

    Article  Google Scholar 

  • Feng K, Xing GM, Liu JX, Wang H, Tan GF, Wang GL, Xu ZS, Xiong AS (2021) AgMYB1, an R2R3-MYB factor, plays a role in anthocyanin production and enhancement of antioxidant capacity in celery. Veg Res 1:2

    Google Scholar 

  • Gonzalez A, Zhao MZ, Leavitt JM, Lloyd AM (2010) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827

    Article  Google Scholar 

  • Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA 97(25):13579–13584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han XJ, Wu YF, Gao S, Yu HN, Xu RX, Lou HX, Cheng AX (2014) Functional characterization of a Plagiochasma appendiculatumflavone synthase I showing flavanone 2-hydroxylase activity. FEBS Lett 588(14):2307–2314

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E (2004) Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 279(46):48205–48213

    Article  CAS  PubMed  Google Scholar 

  • Huang WJ, Khaidun ABM, Chen JJ, Zhang CJ, Lv HY, Yuan L, Wang Y (2016) A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional chinese eedicinal plant, Epimedium sagittatum. Front Plant Sci 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Jie L, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2010) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56(2):316–326

    Google Scholar 

  • Laura MP, Guadalupe CL, Francisco AR, Thomas H, Ludwig R, Antonio RF, Jose LC, Wilfried S, Juan MB, Rosario BP (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65(2):401–417

    Article  Google Scholar 

  • Lee ER, Kang GH, Cho SG (2007) Effect of flavonoids on human health: old subjects but new challenges. Recent Pat Biotechnol 1(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Leonard E, Chemler J, Lim KH, Koffas MAG (2006) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol 70(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Li JW, Zhai Y, Zhao Y, Zhao X, Zhang HJ, Su LT, Wang Y, Wang QY (2013) A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene 532(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Feng K, Hou XL, Jiang Q, Xu ZS, Wang GL, Liu JX, Wang F, Xiong AS (2020) The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Hortic Res 7:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CG, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in medicago truncatula. Plant Physiol 165(4):1424–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens S, Forkmann G, Matern U, Lukacin R (2001) Cloning of parsley flavone synthase I. Phytochemistry 58(1):43–46

    Article  CAS  PubMed  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XL, Zhao XC, Ding XY, Li Y, Cao JD, Chu ZH, Su XL, Liu YC, Chen XF, Guo JG, Cai ZW, Ding XY (2020) Integrated functional omics analysis of flavonoid related metabolism in AtMYB12 transcript factor overexpressed tomato. J Agric Food Chem 68(24):6776–6787

    Article  CAS  PubMed  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 6(6):212–217

    Article  Google Scholar 

  • Naik J, Rajput R, Pucker B, Stracke R, Pandey A (2021) The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula. Plant Mol Biol 106(1–2):157–172

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Saito M, Yamada E, Fujita K, Kakizaki Y, Nishihara M (2012) Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers. J Exp Bot 63(18):6505–6517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2019) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13(9):2099–2114

    Article  Google Scholar 

  • Nijveldt RJ, Nood EV, Hoorn DEV, Boelens PG, Norren KV, Leeuwen PAV (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425

    Article  CAS  PubMed  Google Scholar 

  • Nix A, Paull CA, Colgrave M (2015) The flavonoid profile of pigeonpea, Cajanus cajan: a review. Springerplus 4:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Misra P, Chandrashekar K, Trivedi PK (2012) Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep 31(10):1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12(12):556–563

    Article  CAS  PubMed  Google Scholar 

  • Qi XW, Fang HL, Chen ZQ, Liu ZQ, Yu X, Liang CY (2019) Ectopic expression of a R2R3-MYB transcription factor gene LjaMYB12 from Lonicera japonica increases flavonoid accumulation in Arabidopsis thaliana. Int J Mol Sci 20(18):4494

    Article  CAS  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am J Bot 104(1):3–4

    Google Scholar 

  • Song GQ, Loskutov AV, Sink KC (2007) Highly efficient Agrobacterium tumefaciens-mediated transformation of celery (Apium graveolens L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 88:193–200

    Article  CAS  Google Scholar 

  • Song TT, Li KT, Wu T, Wang Y, Zhang XZ, Xu XF, Yao YC, Han ZH (2019) Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE 14(1):e0210672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96(3):680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2010) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677

    Article  Google Scholar 

  • Tan GF, Ma J, Zhang XY, Xu ZS, Xiong AS (2017) AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. Plant Sci 263:31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang KL, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  CAS  Google Scholar 

  • Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF (2015) Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog 28(2):102–110

    Article  Google Scholar 

  • Xing B, Dong C, Wei S, Li X, Li M (2020) Effects of key enzyme activities on major secondary metabolites during development of Huai Chrysanthemum. Acta Chin Med 35(04):844–847

    Google Scholar 

  • Yamagishi M, Yoshida Y, Nakayama M (2012) The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity. Mol Breeding 30:913–925

    Article  CAS  Google Scholar 

  • Yan J, Yu L, Xu S, Gu WH, Zhu WM (2014) Apigenin accumulation and expression analysis of apigenin biosynthesis relative genes in celery. Sci Hortic 165:218–224

    Article  CAS  Google Scholar 

  • Yan J, Yu L, He LZ, Zhu LY, Xu S, Wan YH, Wang H, Wang Y, Zhu WM (2019) Comparative transcriptome analysis of celery leaf blades identified an R2R3-MYB transcription factor that regulates apigenin metabolism. J Agric Food Chem 67(18):5265–5277

    Article  CAS  PubMed  Google Scholar 

  • Yan J, He LZ, Xu S, Wan YH, Wang H, Wang Y, Yu L, Zhu WM (2020) Expression analysis, functional marker development and verification of AgFNSI in Celery. Sci Rep 10(1):531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XP, Xu ZD, Yu XY, Zhao LY, Zhao MY, Han X, Qi S (2019) Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa. Int J Mol Sci 20(5):1055

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by Jiangsu Agricultural Science and Technology Innovation Fund (CX(18)2007), New Century Excellent Talents in University (NCET-11-0670), National Natural Science Foundation of China (31272175), Priority Academic Program Development of Jiangsu Higher Education Institutions Project (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

ASX and HW initiated and designed the research, JXL, HW, KF, TL, AQD and YHL performed the experiments; HW, JXL, HL analyzed the data; ASX contributed reagents/materials/analysis tools; HW wrote the paper; ASX and JXL revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Hiroyasu Ebinuma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, JX., Feng, K. et al. AgMYB12, a novel R2R3-MYB transcription factor, regulates apigenin biosynthesis by interacting with the AgFNS gene in celery. Plant Cell Rep 41, 139–151 (2022). https://doi.org/10.1007/s00299-021-02792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02792-4

Keywords

Navigation