Skip to main content

Advertisement

Log in

Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways.

Abstract

Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad B, Azeem F, Ali MA et al (2020) Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics 112:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense Roth under drought stress. Cell Biochem Biophys 68:587–595

    Article  CAS  PubMed  Google Scholar 

  • Binder BM, Kim HJ, Mathews DE et al (2018) A role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene. Plant Direct 2:e00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  • Bowler C, van Camp W, van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Caser M, Chitarra W, D’Angiolillo F et al (2019) Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod 129:85–96

    Article  CAS  Google Scholar 

  • Chen Y, Jiang J, Song A et al (2013) Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol 11:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho YH, Yoo SD (2007) Ethylene response 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant Physiol 143:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Chu ZX, Ma Q, Lin YX et al (2011) Genome-wide identification, classification, and analysis of two-component signal system genes in maize. Genet Mol Res 10:3316–3330

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Considine MJ, María Sandalio L, Helen Foyer C (2015) Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann Bot 116:469–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortleven A, Nitschke S, Klaumünzer M et al (2014) A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. Plant Physiol 164:1470–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz De Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ollas C, Segarra-Medina C, González-Guzmán M et al (2019) A customizable method to characterize Arabidopsis thaliana transpiration under drought conditions. Plant Methods 15:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Dong H, Mu J et al (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Horák J, Chaban C et al (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE 3:e2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding S, Cai Z, Du H, Wang H (2019) Genome-wide analysis of TCP family genes in Zea mays l. Identified a role for ZmTCP42 in drought tolerance. Int J Mol Sci 20:2762

    Article  CAS  PubMed Central  Google Scholar 

  • Ding Z, Li S, An X et al (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    Article  CAS  PubMed  Google Scholar 

  • Dittrich M, Mueller HM, Bauer H et al (2019) The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants 5:1002–1011

    Article  CAS  PubMed  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integrat Plant Biol 50:1318–1326

    Article  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H et al (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farber M, Attia Z, Weiss D (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. J Exp Bot 67:6351–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168:1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R et al (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grefen C, Städele K, Růžička K et al (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL et al (2010) Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pak J Bot 42:3103–3112

    CAS  Google Scholar 

  • Hao Z, Singh VP, Xia Y (2018) Seasonal drought prediction: Advances, challenges, and future prospects. Rev Geophys 56:108–141

    Article  Google Scholar 

  • Harb A, Awad D, Samarah N (2015) Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare l.) under controlled severe drought. J Plant Interact 10:109–116

    Article  CAS  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V et al (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23:3290–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Liu X, Ye L et al (2016a) Genome-wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci 17:1204

    Article  PubMed Central  Google Scholar 

  • He Y, Liu X, Zou T et al (2016b) Genome-wide identification of two-component system genes in cucurbitaceae crops and expression profiling analyses in cucumber. Front Plant Sci 7:899

    Article  PubMed  PubMed Central  Google Scholar 

  • Héricourt F, Larcher M, Chefdor F et al (2019) New insight into HPts as hubs in poplar cytokinin and osmosensing multistep phosphorelays: Cytokinin pathway uses specific hpts. Plants 8:591

    Article  PubMed Central  Google Scholar 

  • Hoang XLT, Nguyen NC, Nguyen YNH et al (2020) The soybean GmNAC019 transcription factor mediates drought tolerance in Arabidopsis in an abscisic acid-dependent manner. Int J Mol Sci 21:286

    Article  CAS  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM et al (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S et al (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CH, Kuo WY, Weiss C, Jinn TL (2012) Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiol 158:737–746

    Article  CAS  PubMed  Google Scholar 

  • Huang HJ, Yang ZQ, Zhang MY et al (2018a) Effects of water stress on growth, photosynthesis, root activity and endogenous hormones of Cucumis sativus. Int J Agric Biol 20:2579–2589

    Google Scholar 

  • Huang Q, Wang Y, Li B et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Hou L, Meng J et al (2018b) The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant 11:970–982

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sun MM, Ye Q et al (2017) Abscisic acid modulates seed germination via ABA insensitive5-mediated phosphate. Plant Physiol 175:1661–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison CE, Li J, Argueso C et al (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:287–293

    Article  Google Scholar 

  • Impa SM, Nadaradjan S (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 131–147

    Chapter  Google Scholar 

  • Ishida K, Niwa Y, Yamashino T, Mizuno T (2009) A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 16:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida K, Yamashino T, Mizuno T (2008) Expression of the cytokinin-induced type-A response regulator gene ARR9 is regulated by the circadian clock in Arabidopsis thaliana. Biosci Biotechnol Biochem 72:3025–3029

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim J (2013) Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim NY, Kim S et al (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Li KQ, Xu XY et al (2017) A novel NAC transcription factor, Pbenac1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Front Plant Sci 8:1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang NY, Cho C, Kim J (2013) Inducible expression of Arabidopsis response regulator 22 (ARR22), a Type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS ONE 8:e79248

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Kerchev P, Waszczak C, Lewandowska A et al (2016) Lack of Glycolate oxidase1, but not Glycolate oxidase2, attenuates the photorespiratory phenotype of catalase2-deficient Arabidopsis. Plant Physiol 171:1704–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Zhou S, Yin S et al (2016) Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development. Front Plant Sci 7:1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kumar MN, Jane WN, Verslues PE (2013) Role of the putative osmosensor Arabidopsis in dehydration avoidance and low-water-potential response . Plant Physiol 161:942–953

  • Le DT, Nishiyama R, Watanabe Y et al (2011) Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng G, Hall J (2019) Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Cai H, Liu P et al (2017) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Varala K, Moose SP, Hudson ME (2012) The inheritance pattern of 24 nt siRNA clusters in Arabidopsis hybrids is influenced by proximity to transposable elements. PLoS ONE 7:e47043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Baek W, Han SW, Lee SC (2013) Arabidopsis PYl8 plays an important role for ABA signaling and drought stress responses. Plant Pathol J 29:471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang M, Kong L et al (2014) Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 21:379–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG et al (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214

    Article  CAS  PubMed  Google Scholar 

  • Ma QH, Tian B (2005) Characterization of a wheat histidine-containing phosphotransfer protein (HP) that is regulated by cytokinin-mediated inhibition of leaf senescence. Plant Sci 168:1507–1514

    Article  CAS  Google Scholar 

  • Marchadier E, Hetherington AM (2014) Involvement of two-component signalling systems in the regulation of stomatal aperture by light in Arabidopsis thaliana. New Phytol 203:462–468

    Article  CAS  PubMed  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M et al (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, van Breusegem F (2018) Reactive oxygen species in plant development. Development 145:209–236

    Article  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idänheimo N et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Mira-Rodado V, Veerabagu M, Witthöft J et al (2012) Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana. Plant Signal Behav 7:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good trends. Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T et al (2010) Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17:303–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  CAS  PubMed  Google Scholar 

  • Nghia DHT, Chuong NN, Hoang XLT et al (2020) Heterologous expression of a soybean gene RR34 conferred improved drought resistance of transgenic Arabidopsis. Plants 9:494

    Article  CAS  PubMed Central  Google Scholar 

  • Nguyen KH, van Ha C, Nishiyama R et al (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci 113:3090–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KH, Mostofa MG, Li W et al (2018) The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Bot 151:12–20

    Article  CAS  Google Scholar 

  • Nguyen KH, Mostofa MG, Tran CD, et al. (2020) The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. bioRxiv

  • Nguyen NC, Hoang XLT, Nguyen QT et al (2019) Ectopic expression of Glycine max GmNAC109 enhances drought tolerance and ABA sensitivity in Arabidopsis. Biomolecules 9:714

    Article  CAS  PubMed Central  Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration insights from Arabidopsis. Plant Physiol 143:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nir I, Moshelion M, Weiss D (2014) The Arabidopsis Gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ 37:113–123

    Article  CAS  PubMed  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S et al (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA et al (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 110:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pareek A, Singh A, Kumar M et al (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passricha N, Saifi S, Khatodia S, Tuteja N (2016) Assessing zygosity in progeny of transgenic plants: current methods and perspectives. J Biol Methods 3:46

    Article  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Pham J, Desikan R (2012) Modulation of ROS production and hormone levels by AHK5 during abiotic and biotic stress signaling. Plant Signal Behav 7:893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D et al (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci 99:15800–15805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed S, Bashir K, Matsui A et al (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front Plant Sci 7:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez Y, Pérez E, Solórzano E et al (2001) Peroxidase and polyphenoloxidase activities in tomato roots inoculated with Glomus clarum or Glomus fasciculatum. Cult Trop 22:11–16

    Google Scholar 

  • Rowland MA, Deeds EJ (2014) Crosstalk and the evolution of specificity in two-component signaling. Proc Natl Acad Sci 111:5550–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Sade N, del Mar R-W, Umnajkitikorn K, Blumwald E (2018) Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot 69:845–853

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Honma T, Takashi A et al (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, To JPC, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18:55–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and Histidyl-Aspartyl phosphorelays. Arabidopsis Book 6:e0112

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X, Rashotte AM (2012) Advances in upstream players of cytokinin phosphorelay: receptors and histidine phosphotransfer proteins. Plant Cell Rep 31:789–799

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kushwaha HR, Soni P et al (2015) Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front Plant Sci 6:711

    Article  PubMed  PubMed Central  Google Scholar 

  • Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Su T, Wang P, Li H et al (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integrat Plant Biol 60:591–607

    Article  CAS  Google Scholar 

  • Sun L, Zhang Q, Wu J et al (2014) Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759

    Article  CAS  PubMed  Google Scholar 

  • Thu NBA, Hoang XLT, Nguyen TDH et al (2015) Differential expression of two-component system–related drought-responsive genes in two contrasting drought-tolerant soybean cultivars DT51 and MTD720 under well-watered and drought conditions. Plant Mol Biol Rep 33:1599–1610

    Article  CAS  Google Scholar 

  • Tizaoui K, Kchouk ME (2012) Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genet Mol Biol 35:640–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5:148–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Manghwar H, Shaban M et al (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2000) Two-component systems in plant signal transduction. Trends Plant Sci 5:67–74

    Article  CAS  PubMed  Google Scholar 

  • Vaahtera L, Brosché M (2011) More than the sum of its parts—how to achieve a specific transcriptional response to abiotic stress. In: Plant Science. American Society of Plant Physiologists, pp 421–430

  • Valentine JS (1994) Dioxygen Reactions. In: Chemistry B (ed) Bertini I, Gray HB, Lippard SJ, Valentine JS. University Science Books, Mill Valley, pp 313–523

    Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S et al (2006) Erratum: methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 46:1092

    Article  CAS  Google Scholar 

  • Vescovi M, Riefler M, Gessuti M et al (2012) Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. J Exp Bot 63:2825–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu Q, Liu Z et al (2016) Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. J Integr Plant Biol 58:67–80

    Article  CAS  Google Scholar 

  • Yu J, Yang L, Liu X et al (2016) Overexpression of poplar pyrabactin resistance-like abscisic acid receptors promotes abscisic acid sensitivity and drought resistance in transgenic Arabidopsis. PLoS ONE 11:e0168040

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Y, Zhang Q et al (2020) Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. Plant Mol Biol 102:1–17

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chan Z, Gao J et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci 113:1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2017-28-02. XLTH was funded by Vingroup Joint Stock Company and supported by the Domestic Master/PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code VINIF.2020.TS.09.

Author information

Authors and Affiliations

Authors

Contributions

NNC was responsible for investigation, data curation, formal analysis, visualization and writing original draft preparation. XLTH was responsible for conceptualization, methodology, writing and review. DHTN participated in investigation, data curation and writing. NCN was responsible for methodology and visualization. DTTT was involved in methodology. TBT and TTMN were involved in investigation. NBAT was involved in conceptualization and methodology. QTN was responsible for review and editing. NPT was responsible for project administration, supervision, conceptualization, validation, review and funding.

Corresponding author

Correspondence to Nguyen Phuong Thao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Prakash Lakshmanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, N.N., Hoang, X.L.T., Nghia, D.H.T. et al. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. Plant Cell Rep 40, 819–834 (2021). https://doi.org/10.1007/s00299-021-02677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02677-6

Keywords

Navigation